IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1162-d208222.html
   My bibliography  Save this article

Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review

Author

Listed:
  • Claudia Parra Paitan

    (Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam (VU), 1081 HV Amsterdam, The Netherlands)

  • Peter H. Verburg

    (Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam (VU), 1081 HV Amsterdam, The Netherlands
    Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland)

Abstract

The increasing international trade of agricultural products has contributed to a larger diversity of food at low prices and represents an important economic value. However, such trade can also cause social, environmental and economic impacts beyond the limits of the countries directly involved in the exchange. Agricultural systems are telecoupled because the impacts caused by trade can generate important feedback loops, spillovers, rebound effects, time lags and non-linearities across multiple geographical and temporal scales that make these impacts more difficult to identify and mitigate. We make a comparative review of current impact assessment methods to analyze their suitability to assess the impacts of telecoupled agricultural supply chains. Given the large impacts caused by agricultural production on land systems, we focus on the capacity of methods to account for and spatially allocate direct and indirect land use change. Our analysis identifies trade-offs between methods with respect to the elements of the telecoupled system they address. Hybrid methods are a promising field to navigate these trade-offs. Knowledge gaps in assessing indirect land use change should be overcome in order to improve the accuracy of assessments.

Suggested Citation

  • Claudia Parra Paitan & Peter H. Verburg, 2019. "Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1162-:d:208222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.
    2. Turner, Karen & Lenzen, Manfred & Wiedmann, Thomas & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 1: A technical note on combining input-output and ecological footprint analysis," Ecological Economics, Elsevier, vol. 62(1), pages 37-44, April.
    3. Eric F. Lambin & Holly K. Gibbs & Robert Heilmayr & Kimberly M. Carlson & Leonardo C. Fleck & Rachael D. Garrett & Yann le Polain de Waroux & Constance L. McDermott & David McLaughlin & Peter Newton &, 2018. "The role of supply-chain initiatives in reducing deforestation," Nature Climate Change, Nature, vol. 8(2), pages 109-116, February.
    4. Lone Riisgaard & Simon Bolwig & Stefano Ponte & Andries du Toit & Niels Halberg & Frank Matose, 2010. "Integrating Poverty and Environmental Concerns into Value-Chain Analysis: A Strategic Framework and Practical Guide," Development Policy Review, Overseas Development Institute, vol. 28(2), pages 195-216, March.
    5. Faße, Anja & Grote, Ulrike & Winter, Etti, 2009. "Value chain analysis Methodologies in the context of environment and trade research," Hannover Economic Papers (HEP) dp-429, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Helias A. Udo de Haes & Reinout Heijungs & Sangwon Suh & Gjalt Huppes, 2004. "Three Strategies to Overcome the Limitations of Life‐Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 8(3), pages 19-32, July.
    7. Laura Vang Rasmussen & Brendan Coolsaet & Adrian Martin & Ole Mertz & Unai Pascual & Esteve Corbera & Neil Dawson & Janet A. Fisher & Phil Franks & Casey M. Ryan, 2018. "Social-ecological outcomes of agricultural intensification," Nature Sustainability, Nature, vol. 1(6), pages 275-282, June.
    8. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    9. Laura Albareda & Josep Lozano & Tamyko Ysa, 2007. "Public Policies on Corporate Social Responsibility: The Role of Governments in Europe," Journal of Business Ethics, Springer, vol. 74(4), pages 391-407, September.
    10. Li An & Alex Zvoleff & Jianguo Liu & William Axinn, 2014. "Agent-Based Modeling in Coupled Human and Natural Systems (CHANS): Lessons from a Comparative Analysis," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(4), pages 723-745, July.
    11. Weisz, Helga & Duchin, Faye, 2006. "Physical and monetary input-output analysis: What makes the difference?," Ecological Economics, Elsevier, vol. 57(3), pages 534-541, May.
    12. Cecilie Friis & Jonas Østergaard Nielsen, 2017. "On the System. Boundary Choices, Implications, and Solutions in Telecoupling Land Use Change Research," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
    13. Alexander Popp & Florian Humpenöder & Isabelle Weindl & Benjamin Leon Bodirsky & Markus Bonsch & Hermann Lotze-Campen & Christoph Müller & Anne Biewald & Susanne Rolinski & Miodrag Stevanovic & Jan Ph, 2014. "Land-use protection for climate change mitigation," Nature Climate Change, Nature, vol. 4(12), pages 1095-1098, December.
    14. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    15. van Zelm, Rosalie & van der Velde, Marijn & Balkovic, Juraj & Čengić, Mirza & Elshout, Pieter M.F. & Koellner, Thomas & Núñez, Montserrat & Obersteiner, Michael & Schmid, Erwin & Huijbregts, Mark , 2018. "Spatially explicit life cycle impact assessment for soil erosion from global crop production," Ecosystem Services, Elsevier, vol. 30(PB), pages 220-227.
    16. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    17. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    18. Simon Bolwig & Stefano Ponte & Andries du Toit & Lone Riisgaard & Niels Halberg, 2010. "Integrating Poverty and Environmental Concerns into Value-Chain Analysis: A Conceptual Framework," Development Policy Review, Overseas Development Institute, vol. 28(2), pages 173-194, March.
    19. Nuri Cihat Onat & Murat Kucukvar & Anthony Halog & Scott Cloutier, 2017. "Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives," Sustainability, MDPI, vol. 9(5), pages 1-25, April.
    20. Rebecca Chaplin-Kramer & Sarah Sim & Perrine Hamel & Benjamin Bryant & Ryan Noe & Carina Mueller & Giles Rigarlsford & Michal Kulak & Virginia Kowal & Richard Sharp & Julie Clavreul & Edward Price & S, 2017. "Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    21. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    22. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    23. Roland Clift & Sarah Sim & Henry King & Jonathan L. Chenoweth & Ian Christie & Julie Clavreul & Carina Mueller & Leo Posthuma & Anne-Marie Boulay & Rebecca Chaplin-Kramer & Julia Chatterton & Fabrice , 2017. "The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains," Sustainability, MDPI, vol. 9(2), pages 1-23, February.
    24. Ferng, Jiun-Jiun, 2003. "Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit," Ecological Economics, Elsevier, vol. 46(1), pages 121-141, August.
    25. Lenzen, Manfred & Murray, Joy & Sack, Fabian & Wiedmann, Thomas, 2007. "Shared producer and consumer responsibility -- Theory and practice," Ecological Economics, Elsevier, vol. 61(1), pages 27-42, February.
    26. Henders, Sabine & Ostwald, Madelene, 2014. "Accounting methods for international land-related leakage and distant deforestation drivers," Ecological Economics, Elsevier, vol. 99(C), pages 21-28.
    27. Sala, Serenella & Ciuffo, Biagio & Nijkamp, Peter, 2015. "A systemic framework for sustainability assessment," Ecological Economics, Elsevier, vol. 119(C), pages 314-325.
    28. Vera Heck & Dieter Gerten & Wolfgang Lucht & Alexander Popp, 2018. "Biomass-based negative emissions difficult to reconcile with planetary boundaries," Nature Climate Change, Nature, vol. 8(2), pages 151-155, February.
    29. Valentina De Marchi & Eleonora Di Maria & Stefano Micelli, 2013. "Environmental Strategies, Upgrading and Competitive Advantage in Global Value Chains," Business Strategy and the Environment, Wiley Blackwell, vol. 22(1), pages 62-72, January.
    30. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    31. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    32. Hare, M & Deadman, P, 2004. "Further towards a taxonomy of agent-based simulation models in environmental management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 25-40.
    33. Satoshi Inomata & Anne Owen, 2014. "Comparative Evaluation Of Mrio Databases," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 239-244, September.
    34. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    35. Erik Dietzenbacher & Bart Los & Robert Stehrer & Marcel Timmer & Gaaitzen de Vries, 2013. "The Construction Of World Input-Output Tables In The Wiod Project," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 71-98, March.
    36. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    37. Rose, Adam, 1995. "Input-output economics and computable general equilibrium models," Structural Change and Economic Dynamics, Elsevier, vol. 6(3), pages 295-304, August.
    38. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    39. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    40. Anke Schaffartzik & Helmut Haberl & Thomas Kastner & Dominik Wiedenhofer & Nina Eisenmenger & Karl-Heinz Erb, 2015. "Trading Land: A Review of Approaches to Accounting for Upstream Land Requirements of Traded Products," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 703-714, October.
    41. Fiala, Nathan, 2008. "Measuring sustainability: Why the ecological footprint is bad economics and bad environmental science," Ecological Economics, Elsevier, vol. 67(4), pages 519-525, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalt, Gerald & Kaufmann, Lisa & Kastner, Thomas & Krausmann, Fridolin, 2021. "Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material," Ecological Economics, Elsevier, vol. 188(C).
    2. Vanessa Hull & Christian J. Rivera & Chad Wong, 2019. "A Synthesis of Opportunities for Applying the Telecoupling Framework to Marine Protected Areas," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    3. Zuo Zhang & Min Zhou & Guoliang Ou & Shukui Tan & Yan Song & Lu Zhang & Xin Nie, 2019. "Land Suitability Evaluation and an Interval Stochastic Fuzzy Programming-Based Optimization Model for Land-Use Planning and Environmental Policy Analysis," IJERPH, MDPI, vol. 16(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    2. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    3. Karl Steininger & Pablo Munoz & Jonas Karstensen & Glen Peters & Rita Strohmaier & Erick Velazquez, 2017. "Austria’s Consumption-Based Greenhouse Gas Emissions: Identifying sectoral sources and destinations," EcoMod2017 10472, EcoMod.
    4. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    5. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    6. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    7. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    8. Arto, Iñaki & Cazcarro, Ignacio & Garmendia, Eneko & Ruiz, Itxaso & Sanz, María J., 2022. "A new accounting framework for assessing forest footprint of nations," Ecological Economics, Elsevier, vol. 194(C).
    9. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    10. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    11. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    12. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    13. Jean-Marc Douguet & Martin O 'Connor & Jean-Pierre Doussoulin & Philippe Lanceleur & Karine Philippot, 2014. "L'Empreinte Écologique Du Parc Naturel De La Haute Vallée De Chevreuse : Du Concept À La Construction De L'Outil," Working Papers hal-01243385, HAL.
    14. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    15. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    16. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    17. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    18. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    19. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    20. Xu, Zhongwen & Huang, Liqiao & Liao, Maolin & Xue, Jinjun & Yoshida, Yoshikuni & Long, Yin, 2022. "Quantifying consumption-based carbon emissions of major economic sectors in Japan considering the global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 330-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1162-:d:208222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.