IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6252-d284608.html
   My bibliography  Save this article

What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method

Author

Listed:
  • Shichun Xu

    (Management School, China University of Mining and Technology, Xuzhou 221116, China)

  • Chang Gao

    (Management School, China University of Mining and Technology, Xuzhou 221116, China)

  • Yunfan Li

    (Management School, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaoxue Ma

    (Management School, China University of Mining and Technology, Xuzhou 221116, China)

  • Yifeng Zhou

    (Management School, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhengxia He

    (Business School, Jiangsu Normal University, Xuzhou 221116, China)

  • Bin Zhao

    (Pacific Northwest National Laboratory, Richland, WA 99352, USA)

  • Shuxiao Wang

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China)

Abstract

This paper extends the IO-SDA (input–output and structural decomposition analysis) method to decompose the CBAPT (cross-border air pollutant transfer) into different effects, and reveals the status of CBAPT and analyzes influencing factors affecting the CBAPT in China–US trade by comparing China with the US in these factors. This study found that China was a net air pollutant exporter, and this indicates the air pollutants were transferred from the US into China through China–US trade. On the whole, the China energy intensity, China emission coefficient, and import scale effects decreased the CBAPT, whereas the export scale and US emission coefficient effects increased the CBAPT; the influences of export structure, US energy intensity, and import structure on CBAPT were uncertain. The sectoral distribution of effects on the CBAPT in China–US trade was unbalanced, which was mainly concentrated in heavy industry and transportation. The China energy intensity, China emission coefficient, and import scale effects inhibited sectoral CBAPT, and the export scale effect promoted this sectoral transfer. Other effects on the sectoral transfer were negligible. This paper provides some policy suggestions based on empirical results.

Suggested Citation

  • Shichun Xu & Chang Gao & Yunfan Li & Xiaoxue Ma & Yifeng Zhou & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6252-:d:284608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jayanthakumaran, Kankesu & Liu, Ying, 2016. "Bi-lateral CO2 emissions embodied in Australia–China trade," Energy Policy, Elsevier, vol. 92(C), pages 205-213.
    2. Arnold Tukker & Stefan Giljum & Richard Wood, 2018. "Recent Progress in Assessment of Resource Efficiency and Environmental Impacts Embodied in Trade: An Introduction to this Special Issue," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 489-501, June.
    3. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    4. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    5. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    6. Sun, Chuanwang & Yuan, Xiang & Yao, Xin, 2016. "Social acceptance towards the air pollution in China: Evidence from public's willingness to pay for smog mitigation," Energy Policy, Elsevier, vol. 92(C), pages 313-324.
    7. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    8. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    9. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    10. Dong, Yanli & Ishikawa, Masanobu & Liu, Xianbing & Wang, Can, 2010. "An analysis of the driving forces of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(11), pages 6784-6792, November.
    11. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    12. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    13. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    14. Liu, Xianbing & Ishikawa, Masanobu & Wang, Can & Dong, Yanli & Liu, Wenling, 2010. "Analyses of CO2 emissions embodied in Japan-China trade," Energy Policy, Elsevier, vol. 38(3), pages 1510-1518, March.
    15. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    16. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
    17. Du, Huibin & Guo, Jianghong & Mao, Guozhu & Smith, Alexander M. & Wang, Xuxu & Wang, Yuan, 2011. "CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio," Energy Policy, Elsevier, vol. 39(10), pages 5980-5987, October.
    18. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    2. Ling-Yun He & Hui Huang, 2021. "Economic Benefits and Pollutants Emission Embodied in China–US Merchandise Trade—Comparative Analysis Based on Gross Trade, Value Added Trade and Value Added in Trade," Sustainability, MDPI, vol. 13(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    2. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    3. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    4. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    5. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    6. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    8. Yingying Hu & Wei Wu, 2022. "Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    9. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    10. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    11. Suvajit Banerjee, 2021. "Addressing the carbon emissions embodied in India’s bilateral trade with two eminent Annex-II parties: with input–output and spatial decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5430-5464, April.
    12. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    13. Igor A. Makarov & Anna K. Sokolova, 2015. "Carbon emissions embodied in Russia’s trade," FIW Working Paper series 149, FIW.
    14. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    15. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    16. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    17. Huang, Jian-Bai & Chen, Xi & Song, Yi, 2020. "What drives embodied metal consumption in China's imports and exports," Resources Policy, Elsevier, vol. 69(C).
    18. Du, Huibin & Guo, Jianghong & Mao, Guozhu & Smith, Alexander M. & Wang, Xuxu & Wang, Yuan, 2011. "CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio," Energy Policy, Elsevier, vol. 39(10), pages 5980-5987, October.
    19. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    20. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6252-:d:284608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.