IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p5058-d267693.html
   My bibliography  Save this article

Optimal Alignments for Designing Urban Transport Systems: Application to Seville

Author

Listed:
  • Guido Marseglia

    (Research Department, Link Campus University of Rome, Via del Casale di San Pio V, 44, 00165 Rome, Italy
    Instituto de Matemáticas de la Universidad de Sevilla, (IMUS), Universidad de Sevilla, Avenida Reina Mercedes 41012 Seville, Spain)

  • Carlo Maria Medaglia

    (Research Department, Link Campus University of Rome, Via del Casale di San Pio V, 44, 00165 Rome, Italy)

  • Francisco A. Ortega

    (Instituto de Matemáticas de la Universidad de Sevilla, (IMUS), Universidad de Sevilla, Avenida Reina Mercedes 41012 Seville, Spain
    Departamento de Matematica Applicada I, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Seville, Spain)

  • Juan A. Mesa

    (Instituto de Matemáticas de la Universidad de Sevilla, (IMUS), Universidad de Sevilla, Avenida Reina Mercedes 41012 Seville, Spain
    Departamento de Matematica Applicada II, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, 41092 Seville, Spain)

Abstract

The achievement of some of the Sustainable Development Goals (SDGs) from the recent 2030 Agenda for Sustainable Development has drawn the attention of many countries towards urban transport networks. Mathematical modeling constitutes an analytical tool for the formal description of a transportation system whereby it facilitates the introduction of variables and the definition of objectives to be optimized. One of the stages of the methodology followed in the design of urban transit systems starts with the determination of corridors to optimize the population covered by the system whilst taking into account the mobility patterns of potential users and the time saved when the public network is used instead of private means of transport. Since the capture of users occurs at stations, it seems reasonable to consider an extensive and homogeneous set of candidate sites evaluated according to the parameters considered (such as pedestrian population captured and destination preferences) and to select subsets of stations so that alignments can take place. The application of optimization procedures that decide the sequence of nodes composing the alignment can produce zigzagging corridors, which are less appropriate for the design of a single line. The main aim of this work is to include a new criterion to avoid the zigzag effect when the alignment is about to be determined. For this purpose, a curvature concept for polygonal lines is introduced, and its performance is analyzed when criteria of maximizing coverage and minimizing curvature are combined in the same design algorithm. The results show the application of the mathematical model presented for a real case in the city of Seville in Spain.

Suggested Citation

  • Guido Marseglia & Carlo Maria Medaglia & Francisco A. Ortega & Juan A. Mesa, 2019. "Optimal Alignments for Designing Urban Transport Systems: Application to Seville," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5058-:d:267693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/5058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/5058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cantarella, G.E. & Pavone, G. & Vitetta, A., 2006. "Heuristics for urban road network design: Lane layout and signal settings," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1682-1695, December.
    2. Noland, Robert B., 2001. "Relationships between highway capacity and induced vehicle travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 47-72, January.
    3. Elena Cigu & Daniela Tatiana Agheorghiesei & Anca Florentina Gavriluță (Vatamanu) & Elena Toader, 2018. "Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    4. Qing-Chang Lu & Shan Lin, 2019. "Vulnerability Analysis of Urban Rail Transit Network within Multi-Modal Public Transport Networks," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    5. Ortega Riejos, Francisco A. & Barrena, Eva & Canca Ortiz, J. David & Laporte, Gilbert, 2016. "Analyzing the theoretical capacity of railway networks with a radial-backbone topology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 83-92.
    6. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    7. Mohammad Reihaneh & Ahmed Ghoniem, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," Post-Print hal-02117608, HAL.
    8. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    9. Laporte, Gilbert & Ortega, Francisco A. & Pozo, Miguel A. & Puerto, Justo, 2017. "Multi-objective integration of timetables, vehicle schedules and user routings in a transit network," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 94-112.
    10. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    11. Reihaneh, Mohammad & Ghoniem, Ahmed, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 523-538.
    12. G. F. Newell, 1979. "Some Issues Relating to the Optimal Design of Bus Routes," Transportation Science, INFORMS, vol. 13(1), pages 20-35, February.
    13. Javier Delso & Belén Martín & Emilio Ortega & Isabel Otero, 2017. "A Model for Assessing Pedestrian Corridors. Application to Vitoria-Gasteiz City (Spain)," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    14. Hertz, Alain & Widmer, Marino, 2003. "Guidelines for the use of meta-heuristics in combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 151(2), pages 247-252, December.
    15. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    16. Guo-Ling Jia & Rong-Guo Ma & Zhi-Hua Hu, 2019. "Urban Transit Network Properties Evaluation and Optimization Based on Complex Network Theory," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    17. Tianyi Nie & Kunhui Ye, 2017. "Demystifying the Barriers to Transport Infrastructure Project Development in Fast Developing Regions: The Case of China," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Wang & Zhengyuan Shi, 2021. "Multi-Reconstruction from Points Cloud by Using a Modified Vector-Valued Allen–Cahn Equation," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    2. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Paula Quentin & Jost Buscher & Thomas Eltner, 2023. "Transport Planning beyond Infrastructural Change: An Empirical Analysis of Transport Planning Practices in the Rhine-Main Region in Germany," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    4. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    5. Marseglia, G. & Mesa, J.A. & Ortega, F.A. & Piedra-de-la-Cuadra, R., 2022. "A heuristic for the deployment of collecting routes for urban recycle stations (eco-points)," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    6. Simona Šinko & Klemen Prah & Tomaž Kramberger, 2021. "Spatial Modelling of Modal Shift Due to COVID-19," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    7. Noé Villegas Flores & Yelinca Saldeño Madero & Camilo Alberto Torres Parra & Isidoro Fasolino & Hugo Alexander Rondón Quintana, 2021. "Multi-Criteria Approach for Prioritizing and Managing Public Investment in Urban Spaces. A Case Study in the Triple Frontier," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    8. Chun Fu & Xiaoqiang Tu & An Huang, 2021. "Identification and Characterization of Production–Living–Ecological Space in a Central Urban Area Based on POI Data: A Case Study for Wuhan, China," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    9. Huangwei Deng & Ying Su & Zhenliang Liao & Jiang Wu, 2022. "Proposal of Implementation Framework of Cooperative Approaches and Sustainable Development Mechanism," Sustainability, MDPI, vol. 14(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrese, Stefano & Cuneo, Valerio & Nigro, Marialisa & Pizzuti, Raffaele & Ardito, Cosimo Federico & Marseglia, Guido, 2022. "Optimization of downstream fuel logistics based on road infrastructure conditions and exposure to accident events," Transport Policy, Elsevier, vol. 124(C), pages 96-105.
    2. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Reihaneh, Mohammad & Abouei Ardakan, Mostafa & Eskandarpour, Majid, 2022. "An exact algorithm for the redundancy allocation problem with heterogeneous components under the mixed redundancy strategy," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1112-1125.
    4. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
    5. Mostafaei, Hossein & Castro, Pedro M. & Oliveira, Fabricio & Harjunkoski, Iiro, 2021. "Efficient formulation for transportation scheduling of single refinery multiproduct pipelines," European Journal of Operational Research, Elsevier, vol. 293(2), pages 731-747.
    6. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    7. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    8. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    9. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    10. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    11. Jing Cheng & Pei Yin, 2022. "Analysis of the Complex Network of the Urban Function under the Lockdown of COVID-19: Evidence from Shenzhen in China," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    12. Fani Samara & Stergios Tampekis & Stavros Sakellariou & Olga Christopoulou & Athanasios Sfougaris, 2015. "The changes of the natural resources access in the small forestry Mediterranean islands: The case study of Skiathos, Greece," Proceedings of International Academic Conferences 2604418, International Institute of Social and Economic Sciences.
    13. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    14. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    15. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    16. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    17. Ian W.H. Parry, 2009. "Pricing Urban Congestion," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 461-484, September.
    18. Weis, Claude & Axhausen, Kay W., 2009. "Induced travel demand: Evidence from a pseudo panel data based structural equations model," Research in Transportation Economics, Elsevier, vol. 25(1), pages 8-18.
    19. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    20. Ofentse Mokwena, 2016. "Paratransit Mesoeconomy: Control Measures From The Supply Side?," Proceedings of Economics and Finance Conferences 3205591, International Institute of Social and Economic Sciences.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:5058-:d:267693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.