IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i2p523-538.html
   My bibliography  Save this article

A branch-and-price algorithm for a vehicle routing with demand allocation problem

Author

Listed:
  • Reihaneh, Mohammad
  • Ghoniem, Ahmed

Abstract

We investigate the vehicle routing with demand allocation problem where the decision-maker jointly optimizes the location of delivery sites, the assignment of customers to (preferably convenient) delivery sites, and the routing of vehicles operated from a central depot to serve customers at their designated sites. We propose an effective branch-and-price (B&P) algorithm that is demonstrated to greatly outperform the use of commercial branch-and-bound/cut solvers such as CPLEX. Central to the efficacy of the proposed B&P algorithm is the development of a specialized dynamic programming procedure that extends works on elementary shortest path problems with resource constraints in order to solve the more complex column generation pricing subproblem. Our computational study demonstrates the efficacy of the proposed approach using a set of 60 problem instances. Moreover, the proposed methodology has the merit of providing optimal solutions in run times that are significantly shorter than those reported for decomposition-based heuristics in the literature.

Suggested Citation

  • Reihaneh, Mohammad & Ghoniem, Ahmed, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 523-538.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:523-538
    DOI: 10.1016/j.ejor.2018.06.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.06.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    2. Christos D. Tarantilis & Emmanouil E. Zachariadis & Chris T. Kiranoudis, 2008. "A Hybrid Guided Local Search for the Vehicle-Routing Problem with Intermediate Replenishment Facilities," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 154-168, February.
    3. Martinelli, Rafael & Pecin, Diego & Poggi, Marcus, 2014. "Efficient elementary and restricted non-elementary route pricing," European Journal of Operational Research, Elsevier, vol. 239(1), pages 102-111.
    4. Schittekat, Patrick & Kinable, Joris & Sörensen, Kenneth & Sevaux, Marc & Spieksma, Frits & Springael, Johan, 2013. "A metaheuristic for the school bus routing problem with bus stop selection," European Journal of Operational Research, Elsevier, vol. 229(2), pages 518-528.
    5. A Ghoniem & C R Scherrer & S Solak, 2013. "A specialized column generation approach for a vehicle routing problem with demand allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(1), pages 114-124, January.
    6. J. Beasley & E. Nascimento, 1996. "The Vehicle Routing-Allocation Problem: A unifying framework," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 65-86, June.
    7. Schneider, M. & Stenger, A. & Hof, J., 2015. "An Adaptive VNS Algorithm for Vehicle Routing Problems with Intermediate Stops," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    9. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2010. "A heuristic procedure for the Capacitated m-Ring-Star problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1227-1234, December.
    10. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    11. Moreno Perez, Jose A. & Marcos Moreno-Vega, J. & Rodriguez Martin, Inmaculada, 2003. "Variable neighborhood tabu search and its application to the median cycle problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 365-378, December.
    12. Senay Solak & Christina Scherrer & Ahmed Ghoniem, 2014. "The stop-and-drop problem in nonprofit food distribution networks," Annals of Operations Research, Springer, vol. 221(1), pages 407-426, October.
    13. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    14. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    15. Michel Gendreau & Gilbert Laporte & Frédéric Semet, 1997. "The Covering Tour Problem," Operations Research, INFORMS, vol. 45(4), pages 568-576, August.
    16. Andreas Baltz & Mourad El Ouali & Gerold J&aauml;ger & Volkmar Sauerland & Anand Srivastav, 2015. "Exact and heuristic algorithms for the Travelling Salesman Problem with Multiple Time Windows and Hotel Selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(4), pages 615-626, April.
    17. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    18. Labbe, Martine & Laporte, Gilbert & Rodriguez Martin, Inmaculada & Gonzalez, Juan Jose Salazar, 2005. "Locating median cycles in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 457-470, January.
    19. Hanif D. Sherali & J. Cole Smith, 2001. "Improving Discrete Model Representations via Symmetry Considerations," Management Science, INFORMS, vol. 47(10), pages 1396-1407, October.
    20. Katta G. Murty & Philipp A. Djang, 1999. "The U.S. Army National Guard's Mobile Training Simulators Location and Routing Problem," Operations Research, INFORMS, vol. 47(2), pages 175-182, April.
    21. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. John R. Current & David A. Schilling, 1989. "The Covering Salesman Problem," Transportation Science, INFORMS, vol. 23(3), pages 208-213, August.
    23. R. Baldacci & M. Dell'Amico & J. Salazar González, 2007. "The Capacitated m -Ring-Star Problem," Operations Research, INFORMS, vol. 55(6), pages 1147-1162, December.
    24. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafaei, Hossein & Castro, Pedro M. & Oliveira, Fabricio & Harjunkoski, Iiro, 2021. "Efficient formulation for transportation scheduling of single refinery multiproduct pipelines," European Journal of Operational Research, Elsevier, vol. 293(2), pages 731-747.
    2. Guido Marseglia & Carlo Maria Medaglia & Francisco A. Ortega & Juan A. Mesa, 2019. "Optimal Alignments for Designing Urban Transport Systems: Application to Seville," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    3. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
    4. Reihaneh, Mohammad & Abouei Ardakan, Mostafa & Eskandarpour, Majid, 2022. "An exact algorithm for the redundancy allocation problem with heterogeneous components under the mixed redundancy strategy," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1112-1125.
    5. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    6. Carrese, Stefano & Cuneo, Valerio & Nigro, Marialisa & Pizzuti, Raffaele & Ardito, Cosimo Federico & Marseglia, Guido, 2022. "Optimization of downstream fuel logistics based on road infrastructure conditions and exposure to accident events," Transport Policy, Elsevier, vol. 124(C), pages 96-105.
    7. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    2. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    3. Fatih Rahim & Canan Sepil, 2014. "A location-routing problem in glass recycling," Annals of Operations Research, Springer, vol. 223(1), pages 329-353, December.
    4. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    5. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    6. Senay Solak & Christina Scherrer & Ahmed Ghoniem, 2014. "The stop-and-drop problem in nonprofit food distribution networks," Annals of Operations Research, Springer, vol. 221(1), pages 407-426, October.
    7. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    8. Boschetti, Marco Antonio & Maniezzo, Vittorio & Strappaveccia, Francesco, 2017. "Route relaxations on GPU for vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 456-466.
    9. Markov, Iliya & Varone, Sacha & Bierlaire, Michel, 2016. "Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 256-273.
    10. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    11. Veenstra, Marjolein & Roodbergen, Kees Jan & Coelho, Leandro C. & Zhu, Stuart X., 2018. "A simultaneous facility location and vehicle routing problem arising in health care logistics in the Netherlands," European Journal of Operational Research, Elsevier, vol. 268(2), pages 703-715.
    12. Juho Andelmin & Enrico Bartolini, 2017. "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, INFORMS, vol. 51(4), pages 1288-1303, November.
    13. Wang, Mengtong & Zhang, Canrong & Bell, Michael G.H. & Miao, Lixin, 2022. "A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1258-1276.
    14. Christian Tilk & Ann-Kathrin Rothenbächer & Timo Gschwind & Stefan Irnich, 2016. "Asymmetry Helps: Dynamic Half-Way Points for Solving Shortest Path Problems with Resource Constraints Faster," Working Papers 1615, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    16. Schiffer, Maximilian & Schneider, Michael & Laporte, Gilbert, 2018. "Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities," European Journal of Operational Research, Elsevier, vol. 265(2), pages 517-532.
    17. Bulhões, Teobaldo & Hà, Minh Hoàng & Martinelli, Rafael & Vidal, Thibaut, 2018. "The vehicle routing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 544-558.
    18. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    19. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2015. "A column generation approach for a multi-attribute vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 888-906.
    20. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:523-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.