IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i1p1-20.html
   My bibliography  Save this article

Spatial coverage in routing and path planning problems

Author

Listed:
  • Glock, Katharina
  • Meyer, Anne

Abstract

Routing and path planning problems that involve spatial coverage have received increasing attention in recent years in different application areas. Spatial coverage refers to the possibility of considering nodes that are not directly served by a vehicle as visited for the purpose of the objective function or constraints. Despite similarities between the underlying problems, solution approaches have been developed in different disciplines independently, leading to different terminologies and solution techniques. This paper proposes a unified view of the approaches: Based on a formal introduction of the concept of spatial coverage in vehicle routing, it presents a classification scheme for core problem features and summarizes problem variants and solution concepts developed in the domains of operations research and robotics. The connections between these related problem classes offer insights into common underlying structures and open possibilities for developing new applications and algorithms.

Suggested Citation

  • Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:1-20
    DOI: 10.1016/j.ejor.2022.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722001369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Archetti, Claudia & Carrabs, Francesco & Cerulli, Raffaele, 2018. "The Set Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 267(1), pages 264-272.
    2. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    3. Karaoğlan, İsmail & Erdoğan, Güneş & Koç, Çağrı, 2018. "The Multi-Vehicle Probabilistic Covering Tour Problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 278-287.
    4. Yang, Zhao & Xiao, Ming-Qing & Ge, Ya-Wei & Feng, De-Long & Zhang, Lei & Song, Hai-Fang & Tang, Xi-Lang, 2018. "A double-loop hybrid algorithm for the traveling salesman problem with arbitrary neighbourhoods," European Journal of Operational Research, Elsevier, vol. 265(1), pages 65-80.
    5. Thais Ávila & Ángel Corberán & Isaac Plana & José M. Sanchis, 2016. "A New Branch-and-Cut Algorithm for the Generalized Directed Rural Postman Problem," Transportation Science, INFORMS, vol. 50(2), pages 750-761, May.
    6. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    7. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    8. Veenstra, Marjolein & Roodbergen, Kees Jan & Coelho, Leandro C. & Zhu, Stuart X., 2018. "A simultaneous facility location and vehicle routing problem arising in health care logistics in the Netherlands," European Journal of Operational Research, Elsevier, vol. 268(2), pages 703-715.
    9. Michael Drexl, 2014. "On the generalized directed rural postman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1143-1154, August.
    10. Naji-Azimi, Z. & Renaud, J. & Ruiz, A. & Salari, M., 2012. "A covering tour approach to the location of satellite distribution centers to supply humanitarian aid," European Journal of Operational Research, Elsevier, vol. 222(3), pages 596-605.
    11. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    12. Wei Zhang & Kai Wang & Shuaian Wang & Gilbert Laporte, 2020. "Clustered coverage orienteering problem of unmanned surface vehicles for water sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 353-367, August.
    13. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2013. "An efficient evolutionary algorithm for the ring star problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 22-33.
    14. Behnam Behdani & J. Cole Smith, 2014. "An Integer-Programming-Based Approach to the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 415-432, August.
    15. J. Beasley & E. Nascimento, 1996. "The Vehicle Routing-Allocation Problem: A unifying framework," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 65-86, June.
    16. Tolga Bektaş & Güneş Erdoğan & Stefan Røpke, 2011. "Formulations and Branch-and-Cut Algorithms for the Generalized Vehicle Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 299-316, August.
    17. Thais Ávila & Ángel Corberán & Isaac Plana & José M. Sanchis, 2017. "Formulations and exact algorithms for the distance-constrained generalized directed rural postman problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 339-365, September.
    18. Francesco Carrabs & Carmine Cerrone & Raffaele Cerulli & Bruce Golden, 2020. "An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1030-1048, October.
    19. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    20. David A. Flores-Garza & M. Angélica Salazar-Aguilar & Sandra Ulrich Ngueveu & Gilbert Laporte, 2017. "The multi-vehicle cumulative covering tour problem," Annals of Operations Research, Springer, vol. 258(2), pages 761-780, November.
    21. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2010. "A heuristic procedure for the Capacitated m-Ring-Star problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1227-1234, December.
    22. Moreno Perez, Jose A. & Marcos Moreno-Vega, J. & Rodriguez Martin, Inmaculada, 2003. "Variable neighborhood tabu search and its application to the median cycle problem," European Journal of Operational Research, Elsevier, vol. 151(2), pages 365-378, December.
    23. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    24. Jiefeng Xu & Steve Y. Chiu & Fred Glover, 1999. "Optimizing a Ring-Based Private Line Telecommunication Network Using Tabu Search," Management Science, INFORMS, vol. 45(3), pages 330-345, March.
    25. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    26. Current, John R. & Schilling, David A., 1994. "The median tour and maximal covering tour problems: Formulations and heuristics," European Journal of Operational Research, Elsevier, vol. 73(1), pages 114-126, February.
    27. Baldacci, Roberto & Hill, Alessandro & Hoshino, Edna A. & Lim, Andrew, 2017. "Pricing strategies for capacitated ring-star problems based on dynamic programming algorithms," European Journal of Operational Research, Elsevier, vol. 262(3), pages 879-893.
    28. Michel Gendreau & Gilbert Laporte & Frédéric Semet, 1997. "The Covering Tour Problem," Operations Research, INFORMS, vol. 45(4), pages 568-576, August.
    29. Ángel Corberán & Isaac Plana & Miguel Reula & José M. Sanchis, 2019. "A matheuristic for the Distance-Constrained Close-Enough Arc Routing Problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 312-326, July.
    30. Labbe, Martine & Laporte, Gilbert & Rodriguez Martin, Inmaculada & Gonzalez, Juan Jose Salazar, 2005. "Locating median cycles in networks," European Journal of Operational Research, Elsevier, vol. 160(2), pages 457-470, January.
    31. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    32. Walton Pereira Coutinho & Roberto Quirino do Nascimento & Artur Alves Pessoa & Anand Subramanian, 2016. "A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 752-765, November.
    33. Naji-Azimi, Zahra & Salari, Majid & Toth, Paolo, 2012. "An Integer Linear Programming based heuristic for the Capacitated m-Ring-Star Problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 17-25.
    34. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1997. "A Branch-and-Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem," Operations Research, INFORMS, vol. 45(3), pages 378-394, June.
    35. John R. Current & David A. Schilling, 1989. "The Covering Salesman Problem," Transportation Science, INFORMS, vol. 23(3), pages 208-213, August.
    36. R. Baldacci & M. Dell'Amico & J. Salazar González, 2007. "The Capacitated m -Ring-Star Problem," Operations Research, INFORMS, vol. 55(6), pages 1147-1162, December.
    37. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    38. Hà, Minh Hoàng & Bostel, Nathalie & Langevin, André & Rousseau, Louis-Martin, 2013. "An exact algorithm and a metaheuristic for the multi-vehicle covering tour problem with a constraint on the number of vertices," European Journal of Operational Research, Elsevier, vol. 226(2), pages 211-220.
    39. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    40. Pěnička, Robert & Faigl, Jan & Saska, Martin, 2019. "Variable Neighborhood Search for the Set Orienteering Problem and its application to other Orienteering Problem variants," European Journal of Operational Research, Elsevier, vol. 276(3), pages 816-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    2. Reihaneh, Mohammad & Ghoniem, Ahmed, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 523-538.
    3. Veenstra, Marjolein & Roodbergen, Kees Jan & Coelho, Leandro C. & Zhu, Stuart X., 2018. "A simultaneous facility location and vehicle routing problem arising in health care logistics in the Netherlands," European Journal of Operational Research, Elsevier, vol. 268(2), pages 703-715.
    4. Corberán, Ángel & Plana, Isaac & Reula, Miguel & Sanchis, José M., 2021. "On the Distance-Constrained Close Enough Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 291(1), pages 32-51.
    5. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    6. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    7. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    8. Anupam Mukherjee & Partha Sarathi Barma & Joydeep Dutta & Goutam Panigrahi & Samarjit Kar & Manoranjan Maiti, 2022. "A multi-objective antlion optimizer for the ring tree problem with secondary sub-depots," Operational Research, Springer, vol. 22(3), pages 1813-1851, July.
    9. Wang, Mengtong & Zhang, Canrong & Bell, Michael G.H. & Miao, Lixin, 2022. "A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1258-1276.
    10. Di Placido, Andrea & Archetti, Claudia & Cerrone, Carmine & Golden, Bruce, 2023. "The generalized close enough traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 310(3), pages 974-991.
    11. L Vogt & C A Poojari & J E Beasley, 2007. "A tabu search algorithm for the single vehicle routing allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 467-480, April.
    12. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    13. Elfe Buluc & Meltem Peker & Bahar Y. Kara & Manoj Dora, 2022. "Covering vehicle routing problem: application for mobile child friendly spaces for refugees," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 461-484, June.
    14. Miranda, Pablo A. & Blazquez, Carola A. & Obreque, Carlos & Maturana-Ross, Javier & Gutierrez-Jarpa, Gabriel, 2018. "The bi-objective insular traveling salesman problem with maritime and ground transportation costs," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1014-1036.
    15. Eda Yücel & F. Sibel Salman & Burçin Bozkaya & Cemre Gökalp, 2020. "A data-driven optimization framework for routing mobile medical facilities," Annals of Operations Research, Springer, vol. 291(1), pages 1077-1102, August.
    16. Karaoğlan, İsmail & Erdoğan, Güneş & Koç, Çağrı, 2018. "The Multi-Vehicle Probabilistic Covering Tour Problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 278-287.
    17. Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 2021. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 499-523, October.
    18. Francesco Carrabs & Carmine Cerrone & Raffaele Cerulli & Bruce Golden, 2020. "An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1030-1048, October.
    19. Eduardo Álvarez-Miranda & Markus Sinnl, 2020. "A branch-and-cut algorithm for the maximum covering cycle problem," Annals of Operations Research, Springer, vol. 284(2), pages 487-499, January.
    20. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.