IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i4d10.1007_s00291-021-00633-0.html
   My bibliography  Save this article

The last-mile vehicle routing problem with delivery options

Author

Listed:
  • Christian Tilk

    (Johannes Gutenberg University Mainz)

  • Katharina Olkis

    (Johannes Gutenberg University Mainz)

  • Stefan Irnich

    (Johannes Gutenberg University Mainz)

Abstract

The ongoing rise in e-commerce comes along with an increasing number of first-time delivery failures due to the absence of the customer at the delivery location. Failed deliveries result in rework which in turn has a large impact on the carriers’ delivery cost. In the classical vehicle routing problem (VRP) with time windows, each customer request has only one location and one time window describing where and when shipments need to be delivered. In contrast, we introduce and analyze the vehicle routing problem with delivery options (VRPDO), in which some requests can be shipped to alternative locations with possibly different time windows. Furthermore, customers may prefer some delivery options. The carrier must then select, for each request, one delivery option such that the carriers’ overall cost is minimized and a given service level regarding customer preferences is achieved. Moreover, when delivery options share a common location, e.g., a locker, capacities must be respected when assigning shipments. To solve the VRPDO exactly, we present a new branch-price-and-cut algorithm. The associated pricing subproblem is a shortest-path problem with resource constraints that we solve with a bidirectional labeling algorithm on an auxiliary network. We focus on the comparison of two alternative modeling approaches for the auxiliary network and present optimal solutions for instances with up to 100 delivery options. Moreover, we provide 17 new optimal solutions for the benchmark set for the VRP with roaming delivery locations.

Suggested Citation

  • Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:4:d:10.1007_s00291-021-00633-0
    DOI: 10.1007/s00291-021-00633-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00633-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00633-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    2. Jasmin Grabenschweiger & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh, 2021. "The vehicle routing problem with heterogeneous locker boxes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 113-142, March.
    3. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    4. Xuping Wang & Linmin Zhan & Junhu Ruan & Jun Zhang, 2014. "How to Choose “Last Mile” Delivery Modes for E-Fulfillment," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, June.
    5. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    6. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    7. J. M. Belenguer & M. C. Martinez & E. Mota, 2000. "A Lower Bound for the Split Delivery Vehicle Routing Problem," Operations Research, INFORMS, vol. 48(5), pages 801-810, October.
    8. Pawel Sitek & Jarosław Wikarek, 2019. "Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach," Annals of Operations Research, Springer, vol. 273(1), pages 257-277, February.
    9. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    10. L Moccia & J-F Cordeau & G Laporte, 2012. "An incremental tabu search heuristic for the generalized vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 232-244, February.
    11. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    12. Zhou, Lin & Baldacci, Roberto & Vigo, Daniele & Wang, Xu, 2018. "A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution," European Journal of Operational Research, Elsevier, vol. 265(2), pages 765-778.
    13. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    14. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    15. Reihaneh, Mohammad & Ghoniem, Ahmed, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 523-538.
    16. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    17. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    18. Mohammad Reihaneh & Ahmed Ghoniem, 2019. "A branch-and-price algorithm for a vehicle routing with demand allocation problem," Post-Print hal-02117608, HAL.
    19. Niklas Kohl & Jacques Desrosiers & Oli B. G. Madsen & Marius M. Solomon & François Soumis, 1999. "2-Path Cuts for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 33(1), pages 101-116, February.
    20. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    21. Claudia Archetti & Ann Melissa Campbell & M. Grazia Speranza, 2016. "Multicommodity vs. Single-Commodity Routing," Transportation Science, INFORMS, vol. 50(2), pages 461-472, May.
    22. A Ghoniem & C R Scherrer & S Solak, 2013. "A specialized column generation approach for a vehicle routing problem with demand allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(1), pages 114-124, January.
    23. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm," Transportation Science, INFORMS, vol. 39(4), pages 539-552, November.
    24. Gschwind, Timo & Bianchessi, Nicola & Irnich, Stefan, 2019. "Stabilized branch-price-and-cut for the commodity-constrained split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 91-104.
    25. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    26. Tilk, Christian & Rothenbächer, Ann-Kathrin & Gschwind, Timo & Irnich, Stefan, 2017. "Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster," European Journal of Operational Research, Elsevier, vol. 261(2), pages 530-539.
    27. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    28. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nima Pourmohammadreza & Mohammad Reza Akbari Jokar, 2023. "A Novel Two-Phase Approach for Optimization of the Last-Mile Delivery Problem with Service Options," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    2. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    3. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    4. Alexander Jungwirth & Guy Desaulniers & Markus Frey & Rainer Kolisch, 2022. "Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1157-1175, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Tilk & Katharina Olkis & Stefan Irnich, 2020. "The Last-mile Vehicle Routing Problem with Delivery Options," Working Papers 2017, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Nicola Bianchessi & Stefan Irnich & Christian Tilk, 2020. "A Branch-Price-and-Cut Algorithm for the Capacitated Multiple Vehicle Traveling Purchaser Problem with Unitary Demand," Working Papers 2003, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Nima Pourmohammadreza & Mohammad Reza Akbari Jokar, 2023. "A Novel Two-Phase Approach for Optimization of the Last-Mile Delivery Problem with Service Options," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    4. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    5. Tilk, Christian & Drexl, Michael & Irnich, Stefan, 2019. "Nested branch-and-price-and-cut for vehicle routing problems with multiple resource interdependencies," European Journal of Operational Research, Elsevier, vol. 276(2), pages 549-565.
    6. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Christian Tilk & Michael Drexl & Stefan Irnich, 2018. "Nested Branch-and-Price-and-Cut for Vehicle Routing Problems with Multiple Resource Interdependencies," Working Papers 1801, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Qie He & Stefan Irnich & Yongjia Song, 2019. "Branch-and-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Transportation Science, INFORMS, vol. 53(5), pages 1409-1426, September.
    11. Yu, Vincent F. & Jodiawan, Panca & Redi, A.A.N. Perwira, 2022. "Crowd-shipping problem with time windows, transshipment nodes, and delivery options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    13. Guy Desaulniers & Timo Gschwind & Stefan Irnich, 2020. "Variable Fixing for Two-Arc Sequences in Branch-Price-and-Cut Algorithms on Path-Based Models," Transportation Science, INFORMS, vol. 54(5), pages 1526-5447, September.
    14. Alexander Jungwirth & Guy Desaulniers & Markus Frey & Rainer Kolisch, 2022. "Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1157-1175, March.
    15. Heßler, Katrin, 2021. "Exact algorithms for the multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 294(1), pages 188-205.
    16. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    18. Tilk, Christian & Goel, Asvin, 2020. "Bidirectional labeling for solving vehicle routing and truck driver scheduling problems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 108-124.
    19. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    20. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:4:d:10.1007_s00291-021-00633-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.