IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i3p1142-1159.html
   My bibliography  Save this article

The vehicle routing problem with time windows and flexible delivery locations

Author

Listed:
  • Frey, Christian M.M.
  • Jungwirth, Alexander
  • Frey, Markus
  • Kolisch, Rainer

Abstract

We introduce a new variant of the well-known vehicle routing problem (VRP): the VRP with time windows and flexible delivery locations (VRPTW-FL). Generally, in the VRP each customer is served in one fixed service location. However, in the VRPTW-FL each customer is served in one of a set of potential service locations, each of which has a certain capacity. From a practical point of view, the VRPTW-FL is highly relevant due to its numerous applications, e.g. parcel delivery, routing with limited parking space, and hospital-wide scheduling of physical therapists. Theoretically, the VRPTW-FL is challenging to solve due to the limited location capacities. When serving a customer, location availability must be ensured at every time. To solve this problem, we present a mathematical model and a tailored hybrid adaptive large neighborhood search. Our heuristic makes use of an innovative backtracking approach during the construction phase to alter unsatisfactory decisions at an early stage. In the meta-heuristic phase, we employ novel neighborhoods and dynamic updates of the objective violation weights. For our computational analysis, we use hospital data to evaluate the utility of flexible delivery locations and various cost functions. Our algorithmic features improve the solution quality considerably.

Suggested Citation

  • Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:3:p:1142-1159
    DOI: 10.1016/j.ejor.2022.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R Baldacci & E Bartolini & G Laporte, 2010. "Some applications of the generalized vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1072-1077, July.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Desrochers, M. & Lenstra, J. K. & Savelsbergh, M. W. P., 1990. "A classification scheme for vehicle routing and scheduling problems," European Journal of Operational Research, Elsevier, vol. 46(3), pages 322-332, June.
    4. L Moccia & J-F Cordeau & G Laporte, 2012. "An incremental tabu search heuristic for the generalized vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 232-244, February.
    5. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    6. Ghiani, Gianpaolo & Improta, Gennaro, 2000. "An efficient transformation of the generalized vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 122(1), pages 11-17, April.
    7. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    8. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    9. Ropke, Stefan & Pisinger, David, 2006. "A unified heuristic for a large class of Vehicle Routing Problems with Backhauls," European Journal of Operational Research, Elsevier, vol. 171(3), pages 750-775, June.
    10. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    11. Potvin, Jean-Yves & Rousseau, Jean-Marc, 1993. "A parallel route building algorithm for the vehicle routing and scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 66(3), pages 331-340, May.
    12. Watson-Gandy, CDT & Dohrn, PJ, 1973. "Depot location with van salesmen -- A practical approach," Omega, Elsevier, vol. 1(3), pages 321-329, June.
    13. David Pisinger & Stefan Ropke, 2019. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 99-127, Springer.
    14. J. Beasley & E. Nascimento, 1996. "The Vehicle Routing-Allocation Problem: A unifying framework," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 65-86, June.
    15. Tolga Bektaş & Güneş Erdoğan & Stefan Røpke, 2011. "Formulations and Branch-and-Cut Algorithms for the Generalized Vehicle Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 299-316, August.
    16. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    17. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    18. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
    19. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    20. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.
    21. Fred Glover & Jin-Kao Hao, 2011. "The case for strategic oscillation," Annals of Operations Research, Springer, vol. 183(1), pages 163-173, March.
    22. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    23. Artigues, Christian & Michelon, Philippe & Reusser, Stephane, 2003. "Insertion techniques for static and dynamic resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 149(2), pages 249-267, September.
    24. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    25. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    26. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    27. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    28. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    29. Jie Zhang & Yifan Zhu & Xiaobo Li & Mengjun Ming & Weiping Wang & Tao Wang, 2022. "Multi-Trip Time-Dependent Vehicle Routing Problem with Split Delivery," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    30. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    31. Renaud Masson & Fabien Lehuédé & Olivier Péton, 2013. "An Adaptive Large Neighborhood Search for the Pickup and Delivery Problem with Transfers," Transportation Science, INFORMS, vol. 47(3), pages 344-355, August.
    32. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Jungwirth & Guy Desaulniers & Markus Frey & Rainer Kolisch, 2022. "Exact Branch-Price-and-Cut for a Hospital Therapist Scheduling Problem with Flexible Service Locations and Time-Dependent Location Capacity," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1157-1175, March.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    3. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    4. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    5. Michael Drexl, 2014. "A Generic Heuristic for Vehicle Routing Problems with Multiple Synchronization Constraints," Working Papers 1412, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Nov 2014.
    6. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Vigo, Daniele, 2021. "A column generation based heuristic for the generalized vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    7. Dumez, Dorian & Tilk, Christian & Irnich, Stefan & Lehuédé, Fabien & Olkis, Katharina & Péton, Olivier, 2023. "A matheuristic for a 2-echelon vehicle routing problem with capacitated satellites and reverse flows," European Journal of Operational Research, Elsevier, vol. 305(1), pages 64-84.
    8. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    10. Özarık, Sami Serkan & Veelenturf, Lucas P. & Woensel, Tom Van & Laporte, Gilbert, 2021. "Optimizing e-commerce last-mile vehicle routing and scheduling under uncertain customer presence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    11. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    12. Santos, Maria João & Curcio, Eduardo & Mulati, Mauro Henrique & Amorim, Pedro & Miyazawa, Flávio Keidi, 2020. "A robust optimization approach for the vehicle routing problem with selective backhauls," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    13. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    14. Dönmez, Sercan & Koç, Çağrı & Altıparmak, Fulya, 2022. "The mixed fleet vehicle routing problem with partial recharging by multiple chargers: Mathematical model and adaptive large neighborhood search," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    15. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    16. Fontaine, Pirmin, 2022. "The vehicle routing problem with load-dependent travel times for cargo bicycles," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1005-1016.
    17. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    18. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    19. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    20. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:3:p:1142-1159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.