IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3527-d927212.html
   My bibliography  Save this article

Multi-Trip Time-Dependent Vehicle Routing Problem with Split Delivery

Author

Listed:
  • Jie Zhang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Yifan Zhu

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Xiaobo Li

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Mengjun Ming

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Weiping Wang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Tao Wang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

Motivated by some practical applications of post-disaster supply delivery, we study a multi-trip time-dependent vehicle routing problem with split delivery (MTTDVRP-SD) with an unmanned aerial vehicle (UAV). This is a variant of the VRP that allows the UAV to travel multiple times; the task nodes’ demands are splittable, and the information is time-dependent. We propose a mathematical formulation of the MTTDVRP-SD and analyze the pattern of the solution, including the delivery routing and delivery quantity. We developed an algorithm based on the simulation anneal (SA) framework. First, the initial solution is generated by an improved intelligent auction algorithm; then, the stochastic neighborhood of the delivery route is generated based on the SA algorithm. Based on this, the model is simplified to a mixed-integer linear programming model (MILP), and the CPLEX optimizer is used to solve for the delivery quantity. The proposed algorithm is compared with random–simulation anneal–CPLEX (R-SA-CPLEX), auction–genetic algorithm–CPLEX (A-GA-CPLEX), and auction–simulation anneal–CPLEX (A-SA) on 30 instances at three scales, and its effectiveness and efficiency are statistically verified. The proposed algorithm significantly differs from R-SA-CPLEX at a 99% confidence level and outperforms R-SA-CPLEX by about 30%. In the large-scale case, the computation time of the proposed algorithm is about 30 min shorter than that of A-SA. Compared to the A-GA-CPLEX algorithm, the performance and efficiency of the proposed algorithm are improved. Furthermore, compared to a model that does not allow split delivery, the objective function values of the solution of the MTTDVRP-SD model are reduced by 52.67%, 48.22%, and 34.11% for the three scaled instances, respectively.

Suggested Citation

  • Jie Zhang & Yifan Zhu & Xiaobo Li & Mengjun Ming & Weiping Wang & Tao Wang, 2022. "Multi-Trip Time-Dependent Vehicle Routing Problem with Split Delivery," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3527-:d:927212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3527/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3527/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    2. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    3. Rosario Paradiso & Roberto Roberti & Demetrio Laganá & Wout Dullaert, 2020. "An Exact Solution Framework for Multitrip Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 68(1), pages 180-198, January.
    4. Liu, Shixin & Qin, Shujin & Zhang, Ruiyou, 2018. "A branch-and-price algorithm for the multi-trip multi-repairman problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 25-41.
    5. Nguyen, Phuong Khanh & Crainic, Teodor Gabriel & Toulouse, Michel, 2013. "A tabu search for Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 231(1), pages 43-56.
    6. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    7. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2007. "An exact algorithm for a single-vehicle routing problem with time windows and multiple routes," European Journal of Operational Research, Elsevier, vol. 178(3), pages 755-766, May.
    8. Donati, Alberto V. & Montemanni, Roberto & Casagrande, Norman & Rizzoli, Andrea E. & Gambardella, Luca M., 2008. "Time dependent vehicle routing problem with a multi ant colony system," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1174-1191, March.
    9. J. Molina & A. D. López-Sánchez & A. G. Hernández-Díaz & I. Martínez-Salazar, 2018. "A Multi-start Algorithm with Intelligent Neighborhood Selection for solving multi-objective humanitarian vehicle routing problems," Journal of Heuristics, Springer, vol. 24(2), pages 111-133, April.
    10. Maciek Nowak & Özlem Ergun & Chelsea C. White, 2008. "Pickup and Delivery with Split Loads," Transportation Science, INFORMS, vol. 42(1), pages 32-43, February.
    11. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    12. Moshe Dror & Pierre Trudeau, 1989. "Savings by Split Delivery Routing," Transportation Science, INFORMS, vol. 23(2), pages 141-145, May.
    13. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    14. Ju Myung Song & Weiwei Chen & Lei Lei, 2018. "Supply chain flexibility and operations optimisation under demand uncertainty: a case in disaster relief," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3699-3713, May.
    15. Zongyi Chen & Mingkang Yang & Yijun Guo & Yu Liang & Yifan Ding & Li Wang, 2020. "The Split Delivery Vehicle Routing Problem with Three-Dimensional Loading and Time Windows Constraints," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    16. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    17. Aristide Mingozzi & Roberto Roberti & Paolo Toth, 2013. "An Exact Algorithm for the Multitrip Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 193-207, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weiquan & Zhao, Jingyi, 2023. "Partial linear recharging strategy for the electric fleet size and mix vehicle routing problem with time windows and recharging stations," European Journal of Operational Research, Elsevier, vol. 308(2), pages 929-948.
    2. Maximiliano Cubillos & Mauro Dell’Amico & Ola Jabali & Federico Malucelli & Emanuele Tresoldi, 2023. "An Enhanced Path Planner for Electric Vehicles Considering User-Defined Time Windows and Preferences," Energies, MDPI, vol. 16(10), pages 1-19, May.
    3. Feng, Xuehao & Song, Rui & Yin, Wenwei & Yin, Xiaowei & Zhang, Ruiyou, 2023. "Multimodal transportation network with cargo containerization technology: Advantages and challenges," Transport Policy, Elsevier, vol. 132(C), pages 128-143.
    4. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    5. Ji, Bin & Zhang, Zheng & Yu, Samson S. & Zhou, Saiqi & Wu, Guohua, 2023. "Modelling and heuristically solving many-to-many heterogeneous vehicle routing problem with cross-docking and two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1219-1235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Binbin & Zhang, Zhenzhen & Lim, Andrew, 2021. "Multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 291(1), pages 218-231.
    2. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    3. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.
    4. You, Jintao & Wang, Yuan & Xue, Zhaojie, 2023. "An exact algorithm for the multi-trip container drayage problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Huang, Nan & Li, Jiliu & Zhu, Wenbin & Qin, Hu, 2021. "The multi-trip vehicle routing problem with time windows and unloading queue at depot," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    7. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    8. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    9. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2020. "Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    10. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    11. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    12. Aarabi, Fatemeh & Batta, Rajan, 2020. "Scheduling spatially distributed jobs with degradation: Application to pothole repair," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    13. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    14. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    15. Visser, T.R. & Spliet, R., 2017. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Econometric Institute Research Papers EI2017-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Bettinelli, Andrea & Cacchiani, Valentina & Crainic, Teodor Gabriel & Vigo, Daniele, 2019. "A Branch-and-Cut-and-Price algorithm for the Multi-trip Separate Pickup and Delivery Problem with Time Windows at Customers and Facilities," European Journal of Operational Research, Elsevier, vol. 279(3), pages 824-839.
    17. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    18. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    19. Gmira, Maha & Gendreau, Michel & Lodi, Andrea & Potvin, Jean-Yves, 2021. "Tabu search for the time-dependent vehicle routing problem with time windows on a road network," European Journal of Operational Research, Elsevier, vol. 288(1), pages 129-140.
    20. Verbeeck, C. & Sörensen, K. & Aghezzaf, E.-H. & Vansteenwegen, P., 2014. "A fast solution method for the time-dependent orienteering problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 419-432.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3527-:d:927212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.