IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4922-d265559.html
   My bibliography  Save this article

The Analysis of the Economic Effects on the Greening and Recovery of the Sludge Waste Resulting from the Biogas Production Activity

Author

Listed:
  • Constantin Aurelian Ionescu

    (Faculty of Economics, Hyperion University of Bucharest, 030615 Bucharest, Romania)

  • Mihaela Denisa Coman

    (Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania)

  • Elena Liliana Moiceanu Marin

    (IOSUD, Valahia University of Targoviste, 130105 Targoviste, Romania)

  • Liliana Paschia

    (Faculty of Economics, Hyperion University of Bucharest, 030615 Bucharest, Romania)

  • Nicoleta Luminita Gudanescu Nicolau

    (Romanian Academy, Institute of National Economy, 050711 Bucharest, Romania)

  • Gabriel Cucui

    (Faculty of Economics, Valahia University of Targoviste, 130004 Targoviste, Romania)

  • Dan Marius Coman

    (Faculty of Economics, Valahia University of Targoviste, 130004 Targoviste, Romania)

  • Sorina Geanina Stanescu

    (Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania)

Abstract

Starting from identifying an upward trend in waste disposal costs at the municipal landfill, the research aims to analyze the viability of investment to integrate a compost platform, which transforms the sludge resulting from the biogas production process into a soil improver for agricultural land. The economic entity analyzed activates agri-food and uses a biogas plant as a management tool for the waste from slaughtering chickens, to obtain biogas, heat, and electricity. The study is carried out through the multi-criteria analysis based on the following variants: The operation of the biogas plant with sludge disposal as waste (V 1 ), the operation with recovery of waste as soil improver (V 2 ), the closure of the biogas plant (V 3 ). The economic effects regarding the greening and capitalization of the sludge waste are quantified from a monetary point of view and based on the analysis the optimal variant, V 2 , is established. It has been proven that the investment generates: Positive results increased by 70.52%, a positive and upward opportunity cost by 37.96%, and marginal profit growth of 53.17%. The study emphasizes that efficient waste management turns an environmental problem and cost into an economic and ecological advantage for the economic entities.

Suggested Citation

  • Constantin Aurelian Ionescu & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin & Liliana Paschia & Nicoleta Luminita Gudanescu Nicolau & Gabriel Cucui & Dan Marius Coman & Sorina Geanina Stanescu, 2019. "The Analysis of the Economic Effects on the Greening and Recovery of the Sludge Waste Resulting from the Biogas Production Activity," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4922-:d:265559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando E. Garcia-Muiña & Rocío González-Sánchez & Anna Maria Ferrari & Davide Settembre-Blundo, 2018. "The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of Businesses and Territories: The Case of an Italian Ceramic Tiles Manufacturing Company," Social Sciences, MDPI, vol. 7(12), pages 1-31, December.
    2. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    3. Rentschler, Jun & Kornejew, Martin & Bazilian, Morgan, 2017. "Fossil fuel subsidy reforms and their impacts on firms," Energy Policy, Elsevier, vol. 108(C), pages 617-623.
    4. Tsapekos, P. & Khoshnevisan, B. & Alvarado-Morales, M. & Symeonidis, A. & Kougias, P.G. & Angelidaki, Irini, 2019. "Environmental impacts of biogas production from grass: Role of co-digestion and pretreatment at harvesting time," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
    6. Jun Rentschler & Morgan Bazilian, 2017. "Policy Monitor—Principles for Designing Effective Fossil Fuel Subsidy Reforms," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 138-155.
    7. Joseph E. Aldy & William A. Pizer, 2015. "The Competitiveness Impacts of Climate Change Mitigation Policies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 565-595.
    8. Ervin Saracevic & Daniel Koch & Bernhard Stuermer & Bettina Mihalyi & Angela Miltner & Anton Friedl, 2019. "Economic and Global Warming Potential Assessment of Flexible Power Generation with Biogas Plants," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    9. Wojciech Golimowski & Paweł Krzaczek & Damian Marcinkowski & Weronika Gracz & Grzegorz Wałowski, 2019. "Impact of Biogas and Waste Fats Methyl Esters on NO, NO 2 , CO, and PM Emission by Dual Fuel Diesel Engine," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    10. Gabriel Cucui & Constantin Aurelian Ionescu & Ioana Raluca Goldbach & Mihaela Denisa Coman & Elena Liliana Moiceanu Marin, 2018. "Quantifying the Economic Effects of Biogas Installations for Organic Waste from Agro-Industrial Sector," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    11. Veronica Arthurson, 2009. "Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback," Energies, MDPI, vol. 2(2), pages 1-17, April.
    12. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    13. Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.
    14. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    15. Gláucya Daú & Annibal Scavarda & Luiz Felipe Scavarda & Vivianne Julianelli Taveira Portugal, 2019. "The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    16. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    17. Yiridoe, Emmanuel K. & Gordon, Robert & Brown, Bettina B., 2009. "Nonmarket cobenefits and economic feasibility of on-farm biogas energy production," Energy Policy, Elsevier, vol. 37(3), pages 1170-1179, March.
    18. Ionica Oncioiu & Sorinel Căpuşneanu & Mirela Cătălina Türkeș & Dan Ioan Topor & Dana-Maria Oprea Constantin & Andreea Marin-Pantelescu & Mihaela Ștefan Hint, 2018. "The Sustainability of Romanian SMEs and Their Involvement in the Circular Economy," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    2. McCulloch, Neil & Natalini, Davide & Hossain, Naomi & Justino, Patricia, 2022. "An exploration of the association between fuel subsidies and fuel riots," World Development, Elsevier, vol. 157(C).
    3. Mr. Kangni R Kpodar & Ms. Stefania Fabrizio & Kodjovi M. Eklou, 2019. "Export Competitiveness - Fuel Price Nexus in Developing Countries: Real or False Concern?," IMF Working Papers 2019/025, International Monetary Fund.
    4. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    5. Federico Battista & Nicola Frison & David Bolzonella, 2019. "Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications," Energies, MDPI, vol. 12(17), pages 1-13, August.
    6. Avaci, Angelica Buzinaro & Melegari de Souza, Samuel Nelson & Werncke, Ivan & Chaves, Luiz Inácio, 2013. "Financial economic scenario for the microgeneration of electric energy from swine culture-originated biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 272-276.
    7. Magdalena Kapłan & Kamila Klimek & Grzegorz Maj & Dmytro Zhuravel & Andrii Bondar & Viktoriia Lemeshchenko-Lagoda & Boris Boltianskyi & Larysa Boltianska & Hanna Syrotyuk & Serhiy Syrotyuk & Ryszard K, 2022. "Method of Evaluation of Materials Wear of Cylinder-Piston Group of Diesel Engines in the Biodiesel Fuel Environment," Energies, MDPI, vol. 15(9), pages 1-28, May.
    8. Qinglan Liu & Adriana Hofmann Trevisan & Miying Yang & Janaina Mascarenhas, 2022. "A framework of digital technologies for the circular economy: Digital functions and mechanisms," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2171-2192, July.
    9. Han, Jeehoon & Byun, Jaewon & Kwon, Oseok & Lee, Jechan, 2022. "Climate variability and food waste treatment: Analysis for bioenergy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Gláucya Daú & Annibal Scavarda & Luiz Felipe Scavarda & Vivianne Julianelli Taveira Portugal, 2019. "The Healthcare Sustainable Supply Chain 4.0: The Circular Economy Transition Conceptual Framework with the Corporate Social Responsibility Mirror," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    11. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    12. Irina N. Vikhareva & Guliya K. Aminova & Aliya K. Mazitova, 2022. "Resource Cycling: Application of Anaerobic Utilization Methods," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    13. Carlos Andrés Tavera Romero & Diego F. Castro & Jesús Hamilton Ortiz & Osamah Ibrahim Khalaf & Miguel A. Vargas, 2021. "Synergy between Circular Economy and Industry 4.0: A Literature Review," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    14. Martinát, Stanislav & Navrátil, Josef & Dvořák, Petr & Van der Horst, Dan & Klusáček, Petr & Kunc, Josef & Frantál, Bohumil, 2016. "Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic," Renewable Energy, Elsevier, vol. 95(C), pages 85-97.
    15. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    16. Andrey Kiselev & Elena Magaril & Romen Magaril & Deborah Panepinto & Marco Ravina & Maria Chiara Zanetti, 2019. "Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions," Resources, MDPI, vol. 8(2), pages 1-19, May.
    17. Namuli, R. & Pillay, P. & Jaumard, B. & Laflamme, C.B., 2013. "Threshold herd size for commercial viability of biomass waste to energy conversion systems on rural farms," Applied Energy, Elsevier, vol. 108(C), pages 308-322.
    18. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    19. Rocío González-Sánchez & Davide Settembre-Blundo & Anna Maria Ferrari & Fernando E. García-Muiña, 2020. "Main Dimensions in the Building of the Circular Supply Chain: A Literature Review," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
    20. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4922-:d:265559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.