IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4463-d258655.html
   My bibliography  Save this article

Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change

Author

Listed:
  • Jieming Chou

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Tian Xian

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Joint Center for Global Change Studies, Beijing 100875, China)

  • Runze Zhao

    (Joint Center for Global Change Studies, Beijing 100875, China)

  • Yuan Xu

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Fan Yang

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Mingyang Sun

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

Drought risk analysis can help improve disaster management techniques, thereby reducing potential drought risk under the impacts of climate change. This study analyses observed and model-simulated spatial patterns of changes in drought risk in vulnerable eco-regions in China during 1988–2017 and 2020–2050 using an analytic hierarchy process (AHP) method. To perform a risk assessment and estimation of a drought disaster, three subsystems—namely hazard, vulnerability and exposure—are assessed in terms of the effects of climate change since the middle of the 21st century: (i) Hazards, represented by climate anomalies related to the drought process, such as changes in rainfall averages, temperature averages and evaporation averages; (ii) vulnerability, encompassing land use and mutual transposition between them; (iii) exposure, consisting of socioeconomic, demographic, and farming. The results demonstrated that high hazards continue to be located in the arid zone, high vulnerability levels occur in the Junggar Basin and Inner Mongolia Plateau, and high exposure levels occur Loess Plateau and southern coastal area. In this way, the results provide exhaustive measures for proactive drought risk management and mitigation strategies.

Suggested Citation

  • Jieming Chou & Tian Xian & Runze Zhao & Yuan Xu & Fan Yang & Mingyang Sun, 2019. "Drought Risk Assessment and Estimation in Vulnerable Eco-Regions of China: Under the Background of Climate Change," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4463-:d:258655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    2. Hong Wu & Donald Wilhite, 2004. "An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 1-21, September.
    3. Oleg Smirnov & Minghua Zhang & Tingyin Xiao & John Orbell & Amy Lobben & Josef Gordon, 2016. "The relative importance of climate change and population growth for exposure to future extreme droughts," Climatic Change, Springer, vol. 138(1), pages 41-53, September.
    4. Xiaojing Liu & Jiquan Zhang & Donglai Ma & Yulong Bao & Zhijun Tong & Xingpeng Liu, 2013. "Dynamic risk assessment of drought disaster for maize based on integrating multi-sources data in the region of the northwest of Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1393-1409, February.
    5. Neil Adger, W., 1999. "Social Vulnerability to Climate Change and Extremes in Coastal Vietnam," World Development, Elsevier, vol. 27(2), pages 249-269, February.
    6. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raissa Zurli Bittencourt Bravo & Adriana Leiras & Fernando Luiz Cyrino Oliveira & Ana Paula Martins do Amaral Cunha, 2023. "DRAI: a risk-based drought monitoring and alerting system in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 113-142, May.
    2. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    3. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    4. Ximeng Xu & Qiuhong Tang, 2021. "Meteorological disaster frequency at prefecture-level city scale and induced losses in mainland China during 2011–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 827-844, October.
    5. Babak Jalalzadeh Fard & Jagadeesh Puvvula & Jesse E. Bell, 2022. "Evaluating Changes in Health Risk from Drought over the Contiguous United States," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    6. Ziyang Wang & Peiji Shi & Xuebin Zhang & Huali Tong & Weiping Zhang & Yue Liu, 2021. "Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    7. Qin Ji & Jianping Yang & Can Wang & Hongju Chen & Qingshan He & Zhenqi Sun & Quntao Duan & Yao Li, 2021. "The Risk of the Population in a Changing Climate over the Tibetan Plateau, China: Integrating Hazard, Population Exposure and Vulnerability," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    8. Fengjie Gao & Si Zhang & Rui Yu & Yafang Zhao & Yuxin Chen & Ying Zhang, 2023. "Agricultural Drought Risk Assessment Based on a Comprehensive Model Using Geospatial Techniques in Songnen Plain, China," Land, MDPI, vol. 12(6), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Chen Yuan & Yu-Liang Zhou & Ju-Liang Jin & Yi-Ming Wei, 2013. "Risk analysis for drought hazard in China: a case study in Huaibei Plain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 879-900, June.
    2. Erin Bunting & Jessica Steele & Eric Keys & Shylock Muyengwa & Brian Child & Jane Southworth, 2013. "Local Perception of Risk to Livelihoods in the Semi-Arid Landscape of Southern Africa," Land, MDPI, vol. 2(2), pages 1-27, May.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    6. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.
    7. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    8. Thomas Bolognesi, 2015. "The water vulnerability of metro and megacities: An investigation of structural determinants," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 123-133, May.
    9. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    10. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    11. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    12. Yonas Alem & Mintewab Bezabih & Menale Kassie & Precious Zikhali, 2010. "Does fertilizer use respond to rainfall variability? Panel data evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 165-175, March.
    13. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    14. Delphine Boutin, 2014. "Climate vulnerability, communities' resilience and child labour," Revue d'économie politique, Dalloz, vol. 124(4), pages 625-638.
    15. Jirawat Panpeng & Mokbul Morshed Ahmad, 2017. "Vulnerability of Fishing Communities from Sea-Level Change: A Study of Laemsing District in Chanthaburi Province, Thailand," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    16. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    17. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    18. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    19. Richard S.J. Tol & Samuel Fankhauser & Richard G. Richels & Joel B. Smith, 2000. "How Much Damage Will Climate Change Do? Recent Estimates," Working Papers FNU-2, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2000.
    20. H.M. Tuihedur Rahman & Gordon M. Hickey, 2020. "An Analytical Framework for Assessing Context-Specific Rural Livelihood Vulnerability," Sustainability, MDPI, vol. 12(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4463-:d:258655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.