IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2955-d233910.html
   My bibliography  Save this article

Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil

Author

Listed:
  • Adriana Monteiro da Costa

    (Federal University of Minas Gerais, 6620 Antônio Carlos Ave., Pampulha, Belo Horizonte, MG 31270-901, Brazil)

  • Hugo Henrique Cardoso de Salis

    (Federal University of Minas Gerais, 6620 Antônio Carlos Ave., Pampulha, Belo Horizonte, MG 31270-901, Brazil)

  • João Hebert Moreira Viana

    (Brazilian Agricultural Research Corporation (Embrapa Maize and Sorghum), Sete Lagoas, MG 35701-97, Brazil)

  • Fernando António Leal Pacheco

    (CQVR—Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, Quinta de Prados Ap. 1013, 5001-801 Vila Real, Portugal)

Abstract

The zoning of groundwater recharge potential would be attractive for water managers, but is lacking in many regions around the planet, including in the Jequitiba River basin, Minas Gerais, Brazil. In this study, a physically based spatially distributed method to evaluate groundwater recharge potential at catchment scale was developed and tested in the aforementioned Jequitiba River basin. The data for the test was compiled from institutional sources and implemented in a Geographic Information System. It comprised meteorological, hydrometric, relief, land use, and soil data. The average results resembled the annual recharge calculated by a hydrograph method, which worked as validation method. The spatial variation of recharge highlighted the predominant contribution of flat areas, porous aquifers, and forested regions to groundwater recharge. They also exposed the negative effect of urbanization. In combination, these factors elected the following sectors of the Jequitiba River basin as regions of high recharge potential: the south-southeast part of the headwaters in Prudente de Morais; Sete Lagoas towards the central part of the basin; and the region between Funilândia and Jequitiba, near the Jequitiba river mouth. Some management practices were suggested to improve groundwater recharge. The map of groundwater recharge potential produced in this study is valuable and is therefore proposed as tool for planners in the sustainable use of groundwater and protection of recharge areas.

Suggested Citation

  • Adriana Monteiro da Costa & Hugo Henrique Cardoso de Salis & João Hebert Moreira Viana & Fernando António Leal Pacheco, 2019. "Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2955-:d:233910
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    2. Álvarez, X. & Valero, E. & Santos, R.M.B. & Varandas, S.G.P. & Sanches Fernandes, L.F. & Pacheco, F.A.L., 2017. "Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources," Land Use Policy, Elsevier, vol. 69(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guigui Xu & Xiaosi Su & Yiwu Zhang & Bing You, 2021. "Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    2. Sérgio Lousada & José Cabezas & Rui Alexandre Castanho & José Manuel Naranjo Gómez, 2022. "Land-Use Changes in Insular Urban Territories: A Retrospective Analysis from 1990 to 2018. The Case of Madeira Island—Ribeira Brava," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    3. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    4. Marianno de Olivera, Laís Caroline & de Mendonça, Gislaine Costa & Araújo Costa, Renata Cristina & Leite de Camargo, Regina Aparecida & Fernandes, Luís Filipe Sanches & Pacheco, Fernando António Leal , 2023. "Impacts of urban sprawl in the Administrative Region of Ribeirão Preto (Brazil) and measures to restore improved landscapes," Land Use Policy, Elsevier, vol. 124(C).
    5. Ujjayini Priya & Muhammad Anwar Iqbal & Mohammed Abdus Salam & Md. Nur-E-Alam & Mohammed Faruque Uddin & Abu Reza Md. Towfiqul Islam & Showmitra Kumar Sarkar & Saiful Islam Imran & Aweng Eh Rak, 2022. "Sustainable Groundwater Potential Zoning with Integrating GIS, Remote Sensing, and AHP Model: A Case from North-Central Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    2. Jiahai Yuan & Qi Lei & Minpeng Xiong & Jingsheng Guo & Changhong Zhao, 2014. "Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China," Sustainability, MDPI, vol. 6(10), pages 1-26, October.
    3. Cristina Gómez-Román & Luisa Lima & Sergio Vila-Tojo & Andrea Correa-Chica & Juan Lema & José-Manuel Sabucedo, 2020. "“Who Cares?”: The Acceptance of Decentralized Wastewater Systems in Regions without Water Problems," IJERPH, MDPI, vol. 17(23), pages 1-16, December.
    4. Sorin Avram & Corina Cipu & Ana-Maria Corpade & Carmen Adriana Gheorghe & Nicolae Manta & Mihaita-Iulian Niculae & Ionuţ Silviu Pascu & Róbert Eugen Szép & Steliana Rodino, 2021. "GIS-Based Multi-Criteria Analysis Method for Assessment of Lake Ecosystems Degradation—Case Study in Romania," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    5. John Foster & William Paul Bell & Craig Froome & Phil Wild & Liam Wagner & Deepak Sharma & Suwin Sandu & Suchi Misra & Ravindra Bagia, 2012. "Institutional adaptability to redress electricity infrastructure vulnerability due to climate change," Energy Economics and Management Group Working Papers 7-2012, School of Economics, University of Queensland, Australia.
    6. Timothy P. Neher & Michelle L. Soupir & Rameshwar S. Kanwar, 2021. "Lake Atitlan: A Review of the Food, Energy, and Water Sustainability of a Mountain Lake in Guatemala," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    7. Gabriel Medina & Catherine Isley & J. Arbuckle, 2021. "Promoting sustainable agriculture: Iowa stakeholders’ perspectives on the US Farm Bill conservation programs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 173-194, January.
    8. Pechan, Anna & Eisenack, Klaus, 2014. "The impact of heat waves on electricity spot markets," Energy Economics, Elsevier, vol. 43(C), pages 63-71.
    9. Koch, Hagen & Vögele, Stefan, 2013. "Hydro-climatic conditions and thermoelectric electricity generation – Part I: Development of models," Energy, Elsevier, vol. 63(C), pages 42-51.
    10. Hoffmann, Bastian & Häfele, Sebastian & Karl, Ute, 2013. "Analysis of performance losses of thermal power plants in Germany – A System Dynamics model approach using data from regional climate modelling," Energy, Elsevier, vol. 49(C), pages 193-203.
    11. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    12. Ciscar, Juan-Carlos & Dowling, Paul, 2014. "Integrated assessment of climate impacts and adaptation in the energy sector," Energy Economics, Elsevier, vol. 46(C), pages 531-538.
    13. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    14. Hagen Koch & Stefan Vögele & Michael Kaltofen & Uwe Grünewald, 2012. "Trends in water demand and water availability for power plants—scenario analyses for the German capital Berlin," Climatic Change, Springer, vol. 110(3), pages 879-899, February.
    15. Eyer, Jonathan & Wichman, Casey J., 2018. "Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 224-241.
    16. Silvio Pereira-Cardenal & Henrik Madsen & Karsten Arnbjerg-Nielsen & Niels Riegels & Roar Jensen & Birger Mo & Ivar Wangensteen & Peter Bauer-Gottwein, 2014. "Assessing climate change impacts on the Iberian power system using a coupled water-power model," Climatic Change, Springer, vol. 126(3), pages 351-364, October.
    17. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    18. Hugo Henrique Cardoso de Salis & Adriana Monteiro da Costa & Annika Künne & Luís Filipe Sanches Fernandes & Fernando António Leal Pacheco, 2019. "Conjunctive Water Resources Management in Densely Urbanized Karst Areas: A Study in the Sete Lagoas Region, State of Minas Gerais, Brazil," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    19. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    20. Manuel Viso-Vázquez & Carolina Acuña-Alonso & Juan Luis Rodríguez & Xana Álvarez, 2021. "Remote Detection of Cyanobacterial Blooms and Chlorophyll-a Analysis in a Eutrophic Reservoir Using Sentinel-2," Sustainability, MDPI, vol. 13(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2955-:d:233910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.