IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3218-d168627.html
   My bibliography  Save this article

Permaculture—Scientific Evidence of Principles for the Agroecological Design of Farming Systems

Author

Listed:
  • Julius Krebs

    (Institute for Environmental Science, University of Koblenz-Landau, 76829 Landau, Germany)

  • Sonja Bach

    (Landscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technical University Braunschweig, 38106 Braunschweig, Germany)

Abstract

Modern industrial agriculture is largely responsible for environmental problems, such as biodiversity loss, soil degradation, and alteration of biogeochemical cycles or greenhouse gas emission. Agroecology, as a scientific discipline as well as an agricultural practice and movement, emerged as a response to these problems, with the goal to create a more sustainable agriculture. Another response was the emergence of permaculture, a design system based on design principles, as well as a framework for the methods of ecosystem mimicry and complex system optimization. Its emphasis, being on a conscious design of agroecosystems, is the major difference to other alternative agricultural approaches. Agroecology has been a scientific discipline for a few decades already, but only recently have design principles for the reorganization of faming systems been formulated, whereas permaculture practitioners have long been using design principles without them ever being scrutinized. Here, we review the scientific literature to evaluate the scientific basis for the design principles proposed by permaculture co-originator, David Holmgren. Scientific evidence for all twelve principles will be presented. Even though permaculture principles describing the structure of favorable agroecosystems were quite similar to the agroecological approach, permaculture in addition provides principles to guide the design, implementation, and maintenance of resilient agroecological systems.

Suggested Citation

  • Julius Krebs & Sonja Bach, 2018. "Permaculture—Scientific Evidence of Principles for the Agroecological Design of Farming Systems," Sustainability, MDPI, vol. 10(9), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3218-:d:168627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dwayne Benjamin & Loren Brandt, 2002. "Property rights, labour markets, and efficiency in a transition economy: the case of rural China," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 689-716, November.
    2. Barrett, Christopher B. & Bellemare, Marc F. & Hou, Janet Y., 2010. "Reconsidering Conventional Explanations of the Inverse Productivity-Size Relationship," World Development, Elsevier, vol. 38(1), pages 88-97, January.
    3. Alvarez, Antonio & Arias, Carlos, 2004. "Technical efficiency and farm size: a conditional analysis," Agricultural Economics, Blackwell, vol. 30(3), pages 241-250, May.
    4. Paul J. A. Withers & Colin Neal & Helen P. Jarvie & Donnacha G. Doody, 2014. "Agriculture and Eutrophication: Where Do We Go from Here?," Sustainability, MDPI, vol. 6(9), pages 1-23, September.
    5. Collier, Paul, 1983. "Malfunctioning of African Rural Factor Markets: Theory and a Kenyan Example," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 45(2), pages 141-172, May.
    6. Kimhi, Ayal, 2003. "Plot Size And Maize Productivity In Zambia: The Inverse Relationship Re-Examined," Discussion Papers 14980, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    7. Stuart L. Pimm & Peter Raven, 2000. "Extinction by numbers," Nature, Nature, vol. 403(6772), pages 843-845, February.
    8. Quan Nguyen & Minh Hoang & Ingrid Öborn & Meine Noordwijk, 2013. "Multipurpose agroforestry as a climate change resiliency option for farmers: an example of local adaptation in Vietnam," Climatic Change, Springer, vol. 117(1), pages 241-257, March.
    9. McArthur, John W. & McCord, Gordon C., 2017. "Fertilizing growth: Agricultural inputs and their effects in economic development," Journal of Development Economics, Elsevier, vol. 127(C), pages 133-152.
    10. Carter, Michael R, 1984. "Identification of the Inverse Relationship between Farm Size and Productivity: An Empirical Analysis of Peasant Agricultural Production," Oxford Economic Papers, Oxford University Press, vol. 36(1), pages 131-145, March.
    11. Natasha Gilbert, 2009. "Environment: The disappearing nutrient," Nature, Nature, vol. 461(7265), pages 716-718, October.
    12. Zaal, Fred & Oostendorp, Remco H., 2002. "Explaining a Miracle: Intensification and the Transition Towards Sustainable Small-scale Agriculture in Dryland Machakos and Kitui Districts, Kenya," World Development, Elsevier, vol. 30(7), pages 1271-1287, July.
    13. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    14. Daniel Ayalew Ali & Klaus Deininger, 2015. "Is There a Farm Size–Productivity Relationship in African Agriculture? Evidence from Rwanda," Land Economics, University of Wisconsin Press, vol. 91(2), pages 317-343.
    15. Berg, Hakan, 2002. "Rice monoculture and integrated rice-fish farming in the Mekong Delta, Vietnam--economic and ecological considerations," Ecological Economics, Elsevier, vol. 41(1), pages 95-107, April.
    16. Kadir Alsagoff, Syed A. & Clonts, Howard A. & Jolly, Curtis M., 1990. "An integrated poultry, multi-species aquaculture for Malaysian rice farmers: A mixed integer programming approach," Agricultural Systems, Elsevier, vol. 32(3), pages 207-231.
    17. Zhang, Wei & Ricketts, Taylor H. & Kremen, Claire & Carney, Karen & Swinton, Scott M., 2007. "Ecosystem services and dis-services to agriculture," Ecological Economics, Elsevier, vol. 64(2), pages 253-260, December.
    18. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danilo Brozovic, 2020. "Business model based on strong sustainability: Insights from an empirical study," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 763-778, February.
    2. Raissa Ulbrich & Claudia Pahl-Wostl, 2019. "The German Permaculture Community from a Community of Practice Perspective," Sustainability, MDPI, vol. 11(5), pages 1-21, February.
    3. Zahra Didarali & James Gambiza, 2019. "Permaculture: Challenges and Benefits in Improving Rural Livelihoods in South Africa and Zimbabwe," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    4. Tom O’Donoghue & Budiman Minasny & Alex McBratney, 2022. "Regenerative Agriculture and Its Potential to Improve Farmscape Function," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    5. Robson Silva Sø Rocha, 2022. "Degrowth in Practice: Developing an Ecological Habitus within Permaculture Entrepreneurship," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    6. Petra Schneider & Vincent Rochell & Kay Plat & Alexander Jaworski, 2021. "Circular Approaches in Small-Scale Food Production," Circular Economy and Sustainability,, Springer.
    7. Robert Skrzypczyński & Sylwia Dołzbłasz & Krzysztof Janc & Andrzej Raczyk, 2021. "Beyond Supporting Access to Land in Socio-Technical Transitions. How Polish Grassroots Initiatives Help Farmers and New Entrants in Transitioning to Sustainable Models of Agriculture," Land, MDPI, vol. 10(2), pages 1-19, February.
    8. Kaitlyn Spangler & Roslynn Brain McCann & Rafter Sass Ferguson, 2021. "(Re-)Defining Permaculture: Perspectives of Permaculture Teachers and Practitioners across the United States," Sustainability, MDPI, vol. 13(10), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bevis, Leah EM. & Barrett, Christopher B., 2020. "Close to the edge: High productivity at plot peripheries and the inverse size-productivity relationship," Journal of Development Economics, Elsevier, vol. 143(C).
    2. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    3. Helfand, Steven M. & Taylor, Matthew P.H., 2021. "The inverse relationship between farm size and productivity: Refocusing the debate," Food Policy, Elsevier, vol. 99(C).
    4. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    5. Barrett, Christopher B. & Bellemare, Marc F. & Hou, Janet Y., 2010. "Reconsidering Conventional Explanations of the Inverse Productivity-Size Relationship," World Development, Elsevier, vol. 38(1), pages 88-97, January.
    6. Hailemariam Ayalew & Jordan Chamberlin & Carol Newman & Kibrom A. Abay & Frederic Kosmowski & Tesfaye Sida, 2024. "Revisiting the size–productivity relationship with imperfect measures of production and plot size," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 595-619, March.
    7. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    8. Fang Xia & Lingling Hou & Songqing Jin & Dongqing Li, 2020. "Land size and productivity in the livestock sector: evidence from pastoral areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 867-888, July.
    9. Mensah, Edouard R. & Kostandini, Genti, 2020. "The inverse farm size-productivity relationship under land size mis-measurement and in the presence of weather and price risks: Panel data evidence from Uganda," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304477, Agricultural and Applied Economics Association.
    10. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    11. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    12. Omotilewa, Oluwatoba J. & Jayne, T.S. & Muyanga, Milu & Aromolaran, Adebayo B. & Liverpool-Tasie, Lenis Saweda O. & Awokuse, Titus, 2021. "A revisit of farm size and productivity: Empirical evidence from a wide range of farm sizes in Nigeria," World Development, Elsevier, vol. 146(C).
    13. Gourlay, Sydney & Kilic, Talip & Lobell, David B., 2019. "A new spin on an old debate: Errors in farmer-reported production and their implications for inverse scale - Productivity relationship in Uganda," Journal of Development Economics, Elsevier, vol. 141(C).
    14. C. S. C. Sekhar & Namrata Thapa, 2023. "Rural market imperfections in India: Revisiting old debates with new evidence," Development Policy Review, Overseas Development Institute, vol. 41(5), September.
    15. Lowder, Sarah K. & Sánchez, Marco V. & Bertini, Raffaele, 2021. "Which farms feed the world and has farmland become more concentrated?," World Development, Elsevier, vol. 142(C).
    16. Ayala Wineman & Thomas S. Jayne, 2021. "Factor Market Activity and the Inverse Farm Size-Productivity Relationship in Tanzania," Journal of Development Studies, Taylor & Francis Journals, vol. 57(3), pages 443-464, March.
    17. Carletto, Calogero & Savastano, Sara & Zezza, Alberto, 2013. "Fact or artifact: The impact of measurement errors on the farm size–productivity relationship," Journal of Development Economics, Elsevier, vol. 103(C), pages 254-261.
    18. Ifft, Jennifer E. & Yang, Youwei, 2020. "Horses vs. Tractors? Old Order Amish Population Growth and New York Farmland Markets," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304565, Agricultural and Applied Economics Association.
    19. Luo, Yufeng & Chen, Feifei & Qiu, Huanguang, 2018. "Plot size and maize production efficiency in China: agricultural involution and mechanization," 2018 Annual Meeting, August 5-7, Washington, D.C. 274364, Agricultural and Applied Economics Association.
    20. Eliška Svobodová & Radka Redlichová & Gabriela Chmelíková & Ivana Blažková, 2022. "Are the Agricultural Subsidies Based on the Farm Size Justified? Empirical Evidence from the Czech Republic," Agriculture, MDPI, vol. 12(10), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3218-:d:168627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.