IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p877-d137031.html
   My bibliography  Save this article

An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States

Author

Listed:
  • Hong-Hua Qiu

    (School of Law, Northwest University, Xi’an 710127, Shaanxi Province, China
    Max Planck Institute for Innovation and Competition, Marstallplaz 1, 80539 Munich, Germany)

  • Jing Yang

    (Shanghai International College of Intellectual Property, Tongji University, Shanghai 200029, China)

Abstract

Carbon Capture and Storage (CCS) technology is an effective technical means for addressing climate change. The patent documents related to CCS technology filed in China and the United States (U.S.) were searched from INNOGRAPHY, a business database of intellectual property and the technological innovation capabilities of CCS technology were investigated from the perspectives of the lifespan of a patent, the number of claims, the number of forward citations, patent strength and competitive position based on a comparative study between China and the U.S. The results showed that the U.S. has an obvious advantage over the technological innovation capabilities compared to China in the field of CCS technology. The global total number of granted patents in the field of CCS technology was 2325 by the end of 2015, there were 703 and 468 granted patents in U.S. and China respectively. CCS technology in the U.S. has arrived at the stage of growth, or even maturity but is still at the research and development stage in China. Although the number of patents for Chinese CCS technologies is very close to that of the U.S. and is ranked second, China should be focused on enhancing its technological capabilities and patent quality. The policy implications of these research findings and the research limitations are also noted.

Suggested Citation

  • Hong-Hua Qiu & Jing Yang, 2018. "An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:877-:d:137031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lanjouw, Jean O & Schankerman, Mark, 2001. "Characteristics of Patent Litigation: A Window on Competition," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 129-151, Spring.
    2. Gaétan Rassenfosse, 2012. "How SMEs exploit their intellectual property assets: evidence from survey data," Small Business Economics, Springer, vol. 39(2), pages 437-452, September.
    3. Sangsung Park & Sunghae Jun, 2017. "Technology Analysis of Global Smart Light Emitting Diode (LED) Development Using Patent Data," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    4. Junhyeog Choi & Sunghae Jun & Sangsung Park, 2016. "A Patent Analysis for Sustainable Technology Management," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    5. repec:fth:harver:1473 is not listed on IDEAS
    6. Daiho Uhm & Jea-Bok Ryu & Sunghae Jun, 2017. "An Interval Estimation Method of Patent Keyword Data for Sustainable Technology Forecasting," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    7. Hansson, Anders & Bryngelsson, Mårten, 2009. "Expert opinions on carbon dioxide capture and storage--A framing of uncertainties and possibilities," Energy Policy, Elsevier, vol. 37(6), pages 2273-2282, June.
    8. Duan, Hongxia, 2010. "The public perspective of carbon capture and storage for CO2 emission reductions in China," Energy Policy, Elsevier, vol. 38(9), pages 5281-5289, September.
    9. Zheng, Li & Dongjie, Zhang & Linwei, Ma & West, Logan & Weidou, Ni, 2011. "The necessity of and policy suggestions for implementing a limited number of large scale, fully integrated CCS demonstrations in China," Energy Policy, Elsevier, vol. 39(9), pages 5347-5355, September.
    10. Byeongki Jeong & Janghyeok Yoon, 2017. "Competitive Intelligence Analysis of Augmented Reality Technology Using Patent Information," Sustainability, MDPI, vol. 9(4), pages 1-22, March.
    11. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    12. de Coninck, Heleen & Stephens, Jennie C. & Metz, Bert, 2009. "Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration," Energy Policy, Elsevier, vol. 37(6), pages 2161-2165, June.
    13. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    14. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    15. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    16. JinHyo Joseph Yun & EuiSeob Jeong & ChangHwan Lee & JinSeu Park & Xiaofei Zhao, 2017. "Effect of Distance on Open Innovation: Differences among Institutions According to Patent Citation and Reference," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    17. Junghee Han, 2017. "Technology Commercialization through Sustainable Knowledge Sharing from University-Industry Collaborations, with a Focus on Patent Propensity," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    18. Hsieh, Chih-Hung, 2013. "Patent value assessment and commercialization strategy," Technological Forecasting and Social Change, Elsevier, vol. 80(2), pages 307-319.
    19. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    20. van Alphen, Klaas & van Voorst tot Voorst, Quirine & Hekkert, Marko P. & Smits, Ruud E.H.M., 2007. "Societal acceptance of carbon capture and storage technologies," Energy Policy, Elsevier, vol. 35(8), pages 4368-4380, August.
    21. Jongchan Kim & Joonhyuck Lee & Gabjo Kim & Sangsung Park & Dongsik Jang, 2016. "A Hybrid Method of Analyzing Patents for Sustainable Technology Management in Humanoid Robot Industry," Sustainability, MDPI, vol. 8(5), pages 1-14, May.
    22. van Alphen, Klaas & Noothout, Paul M. & Hekkert, Marko P. & Turkenburg, Wim C., 2010. "Evaluating the development of carbon capture and storage technologies in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 971-986, April.
    23. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    24. Gibbins, Jon & Chalmers, Hannah, 2008. "Carbon capture and storage," Energy Policy, Elsevier, vol. 36(12), pages 4317-4322, December.
    25. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    26. Blind, Knut & Edler, Jakob & Frietsch, Rainer & Schmoch, Ulrich, 2006. "Motives to patent: Empirical evidence from Germany," Research Policy, Elsevier, vol. 35(5), pages 655-672, June.
    27. Koo, Jamin & Han, Kyusang & Yoon, En Sup, 2011. "Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 665-672, January.
    28. Stephens, Jennie C. & Jiusto, Scott, 2010. "Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA," Energy Policy, Elsevier, vol. 38(4), pages 2020-2031, April.
    29. Dietmar Harhoff, 2016. "Patent Quality and Examination in Europe," American Economic Review, American Economic Association, vol. 106(5), pages 193-197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
    2. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    3. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi, 2022. "Digital financial inclusion and carbon neutrality: Evidence from non-linear analysis," Resources Policy, Elsevier, vol. 79(C).
    4. Xi Yang & Xiang Yu & Xin Liu, 2018. "Obtaining a Sustainable Competitive Advantage from Patent Information: A Patent Analysis of the Graphene Industry," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    5. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    6. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfister, Curdin & Koomen, Miriam & Harhoff, Dietmar & Backes-Gellner, Uschi, 2021. "Regional innovation effects of applied research institutions," Research Policy, Elsevier, vol. 50(4).
    2. Nicolas van Zeebroeck & Bruno van Pottelsberghe de la Potterie, 2011. "Filing strategies and patent value," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(6), pages 539-561, February.
    3. Fritsch, Michael & Wyrwich, Michael, 2021. "Is innovation (increasingly) concentrated in large cities? An international comparison," Research Policy, Elsevier, vol. 50(6).
    4. Nicolas van Zeebroeck, 2007. "Patents only live twice: a patent survival analysis in Europe," Working Papers CEB 07-028.RS, ULB -- Universite Libre de Bruxelles.
    5. Appio, Francesco Paolo & Baglieri, Daniela & Cesaroni, Fabrizio & Spicuzza, Lucia & Donato, Alessia, 2022. "Patent design strategies: Empirical evidence from European patents," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    6. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    7. Mohd Shadab Danish & Pritam Ranjan & Ruchi Sharma, 2022. "Assessing the Impact of Patent Attributes on the Value of Discrete and Complex Innovations," Papers 2208.07222, arXiv.org.
    8. Mohd Shadab Danish & Pritam Ranjan & Ruchi Sharma, 2021. "Identification of “Valuable” Technologies via Patent Statistics in India: An Analysis Based on Renewal Information," BASE University Working Papers 13/2021, BASE University, Bengaluru, India.
    9. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    10. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    11. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    12. Antonio Messeni Petruzzelli & Daniele Rotolo & Vito Albino, 2014. "Determinants of Patent Citations in Biotechnology: An Analysis of Patent Influence Across the Industrial and Organizational Boundaries," SPRU Working Paper Series 2014-05, SPRU - Science Policy Research Unit, University of Sussex Business School.
    13. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    14. Harhoff, Dietmar & Reitzig, Markus, 2004. "Determinants of opposition against EPO patent grants--the case of biotechnology and pharmaceuticals," International Journal of Industrial Organization, Elsevier, vol. 22(4), pages 443-480, April.
    15. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    16. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    17. Ming, Zeng & Shaojie, Ouyang & Yingjie, Zhang & Hui, Shi, 2014. "CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 604-616.
    18. Juranek, Steffen, 2018. "Investing in legal advice," Information Economics and Policy, Elsevier, vol. 44(C), pages 28-46.
    19. LOPES BENTO Cindy & HOTTENROTT Hanna, 2012. "Quantity or Quality? Collaboration Strategies in Research and Development and Incentives to Patent," LISER Working Paper Series 2012-29, Luxembourg Institute of Socio-Economic Research (LISER).
    20. Hanna Hottenrott & Cindy Lopes-Bento, 2015. "Quantity or quality? Knowledge alliances and their effects on patenting," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(5), pages 981-1011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:877-:d:137031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.