IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v257y2020ics0306261919317192.html
   My bibliography  Save this article

Biological systems for CCS: Patent review as a criterion for technological development

Author

Listed:
  • Míguez, José Luis
  • Porteiro, Jacobo
  • Pérez-Orozco, Raquel
  • Patiño, David
  • Gómez, Miguel Ángel

Abstract

One of the most useful mechanism for reducing and, if it were possible, reverting the global warming effects, consists on the development and use of new technologies for CO2 capture, storage, and utilization. Their implementation is a technological objective, but it can be subject to considerable political and social obstacles which should not prevent a progress on its investigation. Many reviews on this topic are published in the literature; however, the evolution of the related patent activity has been much less studied. This paper aims to analyse the state of the art during recent decade of biological systems for CO2 sequestration, according to the Cooperative Patent Classification criteria. An indicator of the innovative character of new patents, the “Innovation index-i”, is proposed based on the number of citations and the year of publication. Patents were sorted into two main groups, depending on whether they were based on the design of photobioreactors working with algae or whether they focused on the development of enzymes and bacteria for the optimization of the CO2 capture reactions. The results show a pronounced increment in innovative contributions through 2013, led by the USA and countries in Asia (China, Japan and Korea). In terms of companies involved in patent production, Alstom Technology Ltd. and CO2 Solutions Inc. are the most noted companies, with 9% and 8% of the publications, respectively.

Suggested Citation

  • Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317192
    DOI: 10.1016/j.apenergy.2019.114032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Li, Hailong & Jakobsen, Jana P. & Wilhelmsen, Øivind & Yan, Jinyue, 2011. "PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models," Applied Energy, Elsevier, vol. 88(11), pages 3567-3579.
    3. Hong-Hua Qiu & Jing Yang, 2018. "An Assessment of Technological Innovation Capabilities of Carbon Capture and Storage Technology Based on Patent Analysis: A Comparative Study between China and the United States," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Singh, R.N. & Sharma, Shaishav, 2012. "Development of suitable photobioreactor for algae production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2347-2353.
    6. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    7. d'Amore, Federico & Mocellin, Paolo & Vianello, Chiara & Maschio, Giuseppe & Bezzo, Fabrizio, 2018. "Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures," Applied Energy, Elsevier, vol. 223(C), pages 401-415.
    8. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    9. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    10. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    11. Rolfe, A. & Huang, Y. & Haaf, M. & Rezvani, S. & MclIveen-Wright, D. & Hewitt, N.J., 2018. "Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation," Applied Energy, Elsevier, vol. 222(C), pages 169-179.
    12. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    13. Austin, David H, 1993. "An Event-Study Approach to Measuring Innovative Output: The Case of Biotechnology," American Economic Review, American Economic Association, vol. 83(2), pages 253-258, May.
    14. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    15. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    16. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    17. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    18. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    19. Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
    20. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    21. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    22. Zhao, Bingtao & Su, Yaxin, 2014. "Process effect of microalgal-carbon dioxide fixation and biomass production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 121-132.
    23. Nataly Echevarria Huaman, Ruth & Xiu Jun, Tian, 2014. "Energy related CO2 emissions and the progress on CCS projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 368-385.
    24. Nguyen Van Duc Long & Jintae Lee & Kee-Kahb Koo & Patricia Luis & Moonyong Lee, 2017. "Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide," Energies, MDPI, vol. 10(4), pages 1-19, April.
    25. Basberg, Bjorn L., 1987. "Patents and the measurement of technological change: A survey of the literature," Research Policy, Elsevier, vol. 16(2-4), pages 131-141, August.
    26. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    27. Choe, Hochull & Lee, Duk Hee & Kim, Hee Dae & Seo, Il Won, 2016. "Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 361-370.
    28. Fu, Ben-Ran & Hsu, Sung-Wei & Liu, Chih-Hsi & Liu, Yu-Ching, 2014. "Statistical analysis of patent data relating to the organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 986-994.
    29. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    30. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    31. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaozong Zhu & Yezhu Wang & Baohuan Zhou & Xiaoli Hu & Yundong Xie, 2023. "A Patent Bibliometric Analysis of Carbon Capture, Utilization, and Storage (CCUS) Technology," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    3. Wang, Rui-Long & Li, Ming-Jia & Li, Dong & Yang, Yi-Wen, 2022. "The synergy of light/fluid flow and membrane modification of a novel membrane microalgal photobioreactor for direct air carbon capture," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    2. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    3. Yu-Shan Chen & Ke-Chiun Chang, 2009. "Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 637-655, September.
    4. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    5. Pu Liu & Yingying Shao, 2022. "Innovation and new business formation: the role of innovative large firms," Small Business Economics, Springer, vol. 59(2), pages 691-720, August.
    6. Boeing, Philipp & Mueller, Elisabeth, 2019. "Measuring China's patent quality: Development and validation of ISR indices," China Economic Review, Elsevier, vol. 57(C).
    7. Bryan Kelly & Dimitris Papanikolaou & Amit Seru & Matt Taddy, 2021. "Measuring Technological Innovation over the Long Run," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 303-320, September.
    8. Lee, Jangwook & Chung, Jiyoon, 2022. "Women in top management teams and their impact on innovation," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Leonid Kogan & Dimitris Papanikolaou & Amit Seru & Noah Stoffman, 2017. "Technological Innovation, Resource Allocation, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 665-712.
    10. Andreas Reinstaller & Peter Reschenhofer, 2017. "Using PageRank in the analysis of technological progress through patents: an illustration for biotechnological inventions," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1407-1438, December.
    11. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    12. Avimanyu Datta, 2016. "Evaluating The Antecedents Of Foundational Innovations: A Longitudinal Look At Patents From Information Technology Industry," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, January.
    13. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    14. Lybbert, Travis J. & Zolas, Nikolas J., 2014. "Getting patents and economic data to speak to each other: An ‘Algorithmic Links with Probabilities’ approach for joint analyses of patenting and economic activity," Research Policy, Elsevier, vol. 43(3), pages 530-542.
    15. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    16. Hwang, Seonho & Shin, Juneseuk, 2019. "Extending technological trajectories to latest technological changes by overcoming time lags," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 142-153.
    17. Rong, Zhao & Wu, Xiaokai & Boeing, Philipp, 2017. "The effect of institutional ownership on firm innovation: Evidence from Chinese listed firms," Research Policy, Elsevier, vol. 46(9), pages 1533-1551.
    18. N. N., 2020. "WIFO-Monatsberichte, Heft 9/2020," WIFO Monatsberichte (monthly reports), WIFO, vol. 93(9), September.
    19. Neil Gandal & Michal Shur-Ofry & Michael Crystal & Royee Shilony, 2021. "Out of sight: patents that have never been cited," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2903-2929, April.
    20. Federico Munari & Raffaele Oriani (ed.), 2011. "The Economic Valuation of Patents," Books, Edward Elgar Publishing, number 13561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.