IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p388-d129883.html
   My bibliography  Save this article

Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study

Author

Listed:
  • Jicheng Liu

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

  • Dandan He

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

Abstract

The rapid development of Energy Internet (EI) has prompted numbers of generators to participate, leading to a hybrid power system. Hence, how to plan the hybrid power system and allocate its profit becomes necessary. In this paper, the cooperative game theory is introduced to discuss this problem. We first design the basic structure of EI, and point out the object of this study—coal power plant-wind farm-photovoltaic power station-energy storage provider (CWPE) alliance. Subsequently, average allocation strategy (AAS), capacity-based allocation strategy (CAS) and Shapley value allocation strategy (SAS) are proposed, and then the modified disruption propensity (MDP) index is constructed to judge the advantages and disadvantages of the three schemes. Thirdly, taking a certain area of A Province as an example, the profits of CWPE under three strategies are calculated respectively. Finally, by analyzing individual rationality and collective rationality of cooperative game and the MDP index of the three profit allocation schemes, we find that SAS is the most stable.

Suggested Citation

  • Jicheng Liu & Dandan He, 2018. "Profit Allocation of Hybrid Power System Planning in Energy Internet: A Cooperative Game Study," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:388-:d:129883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petra Mesarić & Damira Đukec & Slavko Krajcar, 2017. "Exploring the Potential of Energy Consumers in Smart Grid Using Focus Group Methodology," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    2. Rishang Long & Jian Liu & Chunliang Lu & Jiaqi Shi & Jianhua Zhang, 2017. "Coordinated Optimal Operation Method of the Regional Energy Internet," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    3. Gately, Dermot, 1974. "Sharing the Gains from Regional Cooperation: A Game Theoretic Application to Planning Investment in Electric Power," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 195-208, February.
    4. Xin Wang & Jun Yang & Lei Chen & Jifeng He, 2017. "Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet," Energies, MDPI, vol. 10(2), pages 1-20, February.
    5. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    6. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    7. Tian-tian Feng & Yi-sheng Yang & Yu-heng Yang & Dan-dan Wang, 2017. "Application Status and Problem Investigation of Distributed Generation in China: The Case of Natural Gas, Solar and Wind Resources," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    8. Ran Li & Huizhuo Ma & Feifei Wang & Yihe Wang & Yang Liu & Zenghui Li, 2013. "Game Optimization Theory and Application in Distribution System Expansion Planning, Including Distributed Generation," Energies, MDPI, vol. 6(2), pages 1-24, February.
    9. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    10. Guangdong Wu & Jian Zuo & Xianbo Zhao, 2017. "Incentive Model Based on Cooperative Relationship in Sustainable Construction Projects," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    11. Selvaraju, Ramesh Kumar & Somaskandan, Ganapathy, 2016. "Impact of energy storage units on load frequency control of deregulated power systems," Energy, Elsevier, vol. 97(C), pages 214-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingjun Deng & Guocheng Xiang & Shuntian Yao, 2018. "The Effectiveness of the Multilateral Coalition to Develop a Green Agricultural Products Market in China Based on a TU Cooperative Game Analysis," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    2. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    3. Robert P. Gilles & Lina Mallozzi, 2023. "Game Theoretic Foundations of the Gately Power Measure for Directed Networks," Games, MDPI, vol. 14(5), pages 1-19, September.
    4. Dahu Li & Xiaoda Cheng & Leijiao Ge & Wentao Huang & Jun He & Zhongwei He, 2022. "Multiple Power Supply Capacity Planning Research for New Power System Based on Situation Awareness," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    3. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    4. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    5. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.
    6. Dhundhara, Sandeep & Verma, Yajvender Pal, 2018. "Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system," Energy, Elsevier, vol. 147(C), pages 1108-1128.
    7. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    8. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    9. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    12. Byung Moo Lee, 2017. "Energy Efficiency Gain of Cellular Base Stations with Large-Scale Antenna Systems for Green Information and Communication Technology," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    13. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-29, February.
    14. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    16. Joalland, Olivier & Pereau, Jean-Christophe & Rambonilaza, Tina, 2019. "Bargaining local compensation payments for the installation of new power transmission lines," Energy Economics, Elsevier, vol. 80(C), pages 75-85.
    17. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    18. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    19. Xinhui Lu & Kaile Zhou & Felix T. S. Chan & Shanlin Yang, 2017. "Optimal scheduling of household appliances for smart home energy management considering demand response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1639-1653, September.
    20. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:388-:d:129883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.