IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i2p64-d238522.html
   My bibliography  Save this article

Default Ambiguity

Author

Listed:
  • Tolulope Fadina

    (Department of Mathematical Stochastics, University of Freiburg, Ernst-Zermelo Str.1, 79104 Freiburg im Breisgau, Germany)

  • Thorsten Schmidt

    (Department of Mathematical Stochastics, University of Freiburg, Ernst-Zermelo Str.1, 79104 Freiburg im Breisgau, Germany
    Freiburg Research Institute of Advanced Studies (FRIAS), 79104 Freiburg im Breisgau, Germany
    University of Strasbourg Institute for Advanced Study (USIAS), 67081 Strasbourg, France)

Abstract

This paper discusses ambiguity in the context of single-name credit risk. We focus on uncertainty in the default intensity but also discuss uncertainty in the recovery in a fractional recovery of the market value. This approach is a first step towards integrating uncertainty in credit-risky term structure models and can profit from its simplicity. We derive drift conditions in a Heath–Jarrow–Morton forward rate setting in the case of ambiguous default intensity in combination with zero recovery, and in the case of ambiguous fractional recovery of the market value.

Suggested Citation

  • Tolulope Fadina & Thorsten Schmidt, 2019. "Default Ambiguity," Risks, MDPI, vol. 7(2), pages 1-17, June.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:64-:d:238522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/2/64/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/2/64/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    2. Rüdiger Frey & Thorsten Schmidt, 2012. "Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering," Finance and Stochastics, Springer, vol. 16(1), pages 105-133, January.
    3. Leland, Hayne E & Toft, Klaus Bjerre, 1996. "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Frank Riedel, 2015. "Financial economics without probabilistic prior assumptions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 75-91, April.
    6. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    7. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    8. Tolulope Fadina & Ariel Neufeld & Thorsten Schmidt, 2018. "Affine processes under parameter uncertainty," Papers 1806.02912, arXiv.org, revised Mar 2019.
    9. Alain BÉlanger & Steven E. Shreve & Dennis Wong, 2004. "A General Framework For Pricing Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 317-350, July.
    10. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    11. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    12. Rüdiger Frey & Thorsten Schmidt, 2009. "Pricing Corporate Securities Under Noisy Asset Information," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 403-421, July.
    13. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    14. Fontana, Claudio & Schmidt, Thorsten, 2018. "General dynamic term structures under default risk," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3353-3386.
    15. Geske, Robert, 1977. "The Valuation of Corporate Liabilities as Compound Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 541-552, November.
    16. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    17. Frank Gehmlich & Thorsten Schmidt, 2018. "Dynamic Defaultable Term Structure Modeling Beyond The Intensity Paradigm," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 211-239, January.
    18. Neufeld, Ariel & Nutz, Marcel, 2014. "Measurability of semimartingale characteristics with respect to the probability law," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3819-3845.
    19. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    20. Erhan Bayraktar & Yuchong Zhang, 2016. "Fundamental Theorem of Asset Pricing Under Transaction Costs and Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1039-1054, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    2. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    3. Fontana, Claudio & Schmidt, Thorsten, 2018. "General dynamic term structures under default risk," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3353-3386.
    4. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    5. Cho-Hoi Hui & Chi-Fai Lo & Po-Hon Chau, 2016. "Exchange Rate Dynamics and US Dollar-denominated Sovereign Bond Prices in Emerging Markets," Working Papers 072016, Hong Kong Institute for Monetary Research.
    6. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    7. Lara Cathcart & Lina El-Jahel, 2006. "Pricing defaultable bonds: a middle-way approach between structural and reduced-form models," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 243-253.
    8. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    9. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    10. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    11. Michael Jacobs, Jr, 2011. "An option theoretic model for ultimate loss-given-default with systematic recovery risk and stochastic returns on defaulted debt," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 257-285, Bank for International Settlements.
    12. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    13. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    14. Julian Holzermann, 2018. "The Hull-White Model under Volatility Uncertainty," Papers 1808.03463, arXiv.org, revised Jan 2021.
    15. Frank Gehmlich & Thorsten Schmidt, 2014. "Dynamic Defaultable Term Structure Modelling beyond the Intensity Paradigm," Papers 1411.4851, arXiv.org, revised Jul 2015.
    16. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    17. Chen, Ren-Raw & Chidambaran, N.K. & Imerman, Michael B. & Sopranzetti, Ben J., 2014. "Liquidity, leverage, and Lehman: A structural analysis of financial institutions in crisis," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 117-139.
    18. Stephen Zamore & Kwame Ohene Djan & Ilan Alon & Bersant Hobdari, 2018. "Credit Risk Research: Review and Agenda," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 811-835, March.
    19. Jing-Zhi Huang & Zhan Shi & Hao Zhou, 2020. "Specification Analysis of Structural Credit Risk Models [Corporate bond valuation and hedging with stochastic interest rates and endogenous bankruptcy]," Review of Finance, European Finance Association, vol. 24(1), pages 45-98.
    20. Delianedis, Gordon & Geske, Robert, 2001. "The Components of Corporate Credit Spreads: Default, Recovery, Tax, Jumps, Liquidity, and Market Factors," University of California at Los Angeles, Anderson Graduate School of Management qt32x284q3, Anderson Graduate School of Management, UCLA.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:64-:d:238522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.