IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.02912.html
   My bibliography  Save this paper

Affine processes under parameter uncertainty

Author

Listed:
  • Tolulope Fadina
  • Ariel Neufeld
  • Thorsten Schmidt

Abstract

We develop a one-dimensional notion of affine processes under parameter uncertainty, which we call non-linear affine processes. This is done as follows: given a set of parameters for the process, we construct a corresponding non-linear expectation on the path space of continuous processes. By a general dynamic programming principle we link this non-linear expectation to a variational form of the Kolmogorov equation, where the generator of a single affine process is replaced by the supremum over all corresponding generators of affine processes with parameters in the parameter set. This non-linear affine process yields a tractable model for Knightian uncertainty, especially for modelling interest rates under ambiguity. We then develop an appropriate Ito-formula, the respective term-structure equations and study the non-linear versions of the Vasicek and the Cox-Ingersoll-Ross (CIR) model. Thereafter we introduce the non-linear Vasicek-CIR model. This model is particularly suitable for modelling interest rates when one does not want to restrict the state space a priori and hence the approach solves this modelling issue arising with negative interest rates.

Suggested Citation

  • Tolulope Fadina & Ariel Neufeld & Thorsten Schmidt, 2018. "Affine processes under parameter uncertainty," Papers 1806.02912, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1806.02912
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.02912
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    2. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    5. Denk, Robert & Kupper, Michael & Nendel, Max, 2019. "A Semigroup Approach to Nonlinear Lévy Processes," Center for Mathematical Economics Working Papers 610, Center for Mathematical Economics, Bielefeld University.
    6. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    7. Paul Wilmott & Asli Oztukel, 1998. "Uncertain Parameters, an Empirical Stochastic Volatility Model and Confidence Limits," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 175-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandrine Gumbel & Thorsten Schmidt, 2020. "Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework," Papers 2004.07736, arXiv.org, revised Apr 2020.
    2. Sandrine Gümbel & Thorsten Schmidt, 2020. "Machine Learning for Multiple Yield Curve Markets: Fast Calibration in the Gaussian Affine Framework," Risks, MDPI, vol. 8(2), pages 1-18, May.
    3. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    4. Benedikt Geuchen & Katharina Oberpriller & Thorsten Schmidt, 2022. "Classical and deep pricing for Path-dependent options in non-linear generalized affine models," Papers 2207.13350, arXiv.org.
    5. Blessing, Jonas & Kupper, Michael & Nendel, Max, 2023. "Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups," Center for Mathematical Economics Working Papers 680, Center for Mathematical Economics, Bielefeld University.
    6. Schmidt, Thorsten & Tappe, Stefan & Yu, Weijun, 2020. "Infinite dimensional affine processes," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7131-7169.
    7. Meriam El Mansour & Emmanuel Lepinette, 2023. "Robust discrete-time super-hedging strategies under AIP condition and under price uncertainty," Papers 2311.08847, arXiv.org.
    8. Biagini, Francesca & Mazzon, Andrea & Oberpriller, Katharina, 2023. "Reduced-form framework for multiple ordered default times under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 1-43.
    9. Changhong Guo & Shaomei Fang & Yong He, 2023. "A Generalized Stochastic Process: Fractional G-Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-34, March.
    10. Eva Lutkebohmert & Thorsten Schmidt & Julian Sester, 2021. "Robust deep hedging," Papers 2106.10024, arXiv.org, revised Nov 2021.
    11. Tolulope Fadina & Thorsten Schmidt, 2019. "Default Ambiguity," Risks, MDPI, vol. 7(2), pages 1-17, June.
    12. David Criens & Lars Niemann, 2022. "Robust utility maximization with nonlinear continuous semimartingales," Papers 2206.14015, arXiv.org, revised Aug 2023.
    13. David Criens & Lars Niemann, 2023. "Robust utility maximization with nonlinear continuous semimartingales," Mathematics and Financial Economics, Springer, volume 17, number 5, June.
    14. Bahar Akhtari & Francesca Biagini & Andrea Mazzon & Katharina Oberpriller, 2020. "Generalized Feynman-Kac Formula under volatility uncertainty," Papers 2012.08163, arXiv.org, revised Nov 2022.
    15. Francesca Biagini & Georg Bollweg & Katharina Oberpriller, 2022. "Non-linear Affine Processes with Jumps," Papers 2207.03710, arXiv.org, revised Jul 2022.
    16. Fuhrmann, Sven & Kupper, Michael & Nendel, Max, 2021. "Wasserstein Perturbations of Markovian Transition Semigroups," Center for Mathematical Economics Working Papers 649, Center for Mathematical Economics, Bielefeld University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Beissner, 2019. "Coherent-Price Systems and Uncertainty-Neutral Valuation," Risks, MDPI, vol. 7(3), pages 1-18, September.
    2. Matteo Burzoni & Frank Riedel & H. Mete Soner, 2021. "Viability and Arbitrage Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 89(3), pages 1207-1234, May.
    3. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524.
    4. Coqueret, Guillaume & Tavin, Bertrand, 2016. "An investigation of model risk in a market with jumps and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 253(3), pages 648-658.
    5. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    6. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    7. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    8. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    10. Ariel Neufeld, 2017. "Buy-and-Hold Property for Fully Incomplete Markets when Super-replicating Markovian Claims," Papers 1707.01178, arXiv.org, revised Oct 2018.
    11. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    13. Gianluca Cassese, 2021. "Complete and competitive financial markets in a complex world," Finance and Stochastics, Springer, vol. 25(4), pages 659-688, October.
    14. Yuecai Han & Chunyang Liu, 2018. "Asian Option Pricing under Uncertain Volatility Model," Papers 1808.00656, arXiv.org.
    15. Shige Peng & Shuzhen Yang, 2020. "Distributional uncertainty of the financial time series measured by G-expectation," Papers 2011.09226, arXiv.org, revised Jul 2021.
    16. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    17. Florence Guillaume & Wim Schoutens, 2012. "Calibration risk: Illustrating the impact of calibration risk under the Heston model," Review of Derivatives Research, Springer, vol. 15(1), pages 57-79, April.
    18. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    19. Roberto Andreotti Bodra & Afonso De Campos Pint, 2014. "Modelo De Volatilidade Estocástica Com Saltos Aplicado A Commodities Agrícolas," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 142, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    20. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.02912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.