Advanced Search
MyIDEAS: Login

Uncertain volatility and the risk-free synthesis of derivatives

Contents:

Author Info

  • T. J. Lyons

Abstract

To price contingent claims in a multidimensional frictionless security market it is sufficient that the volatility of the security process is a known function of price and time. In this note we introduce optimal and risk-free strategies for intermediaries in such markets to meet their obligations when the volatility is unknown, and is only assumed to lie in some convex region depending on the prices of the underlying securities and time. Our approach is underpinned by the theory of totally non-linear parabolic partial differential equations (Krylov and Safanov, 1979; Wang, 1992) and the non-stochastic approach to Ito's formation first introduced by Follmer (1981a,b). In these more general conditions of unknown volatility, the optimal risk-free trading strategy will, necessarily, produce an unpredictable surplus over the minimum assets required at any time to meet the liabilities. This surplus, which could be released to the intermediary or to the client, is not required to meet the contingent claim. One sees that the effect of unknown volatility is the creation of a 'with profits' policy, where a premium is paid at the beginning, the contingent claim is collected at the terminal time, but that in addition an unpredictable surplus available as well. The risk-free initial premium required to meet the contingent claim is given by the solution to the Dirichlet problem for a totally non-linear parabolic equation of the Pucci-Bellman type. The existence of a risk-free strategy starting with this minimum sum is dependent upon theorems ensuring the regularity of the solution and upon a non-probabilistic understanding of Ito's change of variable formulae. To illustrate the ideas we give a very simple example of a one-dimensional barrier option where the maximum Black-Scholes price of the option over different fixed values for the volatility lying in an interval always underestimates the risk-free 'price' under the assumption that the volatility can vary within the same interval. This paper puts together rather standard mathematical ideas. However, the author hopes that the overall result is more than the sum of its parts. The ability to hedge under conditions of uncertain volatility seems to be of considerable practical importance. In addition it would be interesting if these ideas explained some features in the design of existing contracts.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1080/13504869500000007
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Applied Mathematical Finance.

Volume (Year): 2 (1995)
Issue (Month): 2 ()
Pages: 117-133

as in new window
Handle: RePEc:taf:apmtfi:v:2:y:1995:i:2:p:117-133

Contact details of provider:
Web page: http://www.tandfonline.com/RAMF20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/RAMF20

Related research

Keywords: volatility; derivative contract; random volatility; Pucci-Bellman equation; Black-Scholes Formula;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:2:y:1995:i:2:p:117-133. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.