IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4478-d985769.html
   My bibliography  Save this article

WSI: A New Early Warning Water Survival Index for the Domestic Water Demand

Author

Listed:
  • Dong-Her Shih

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Ching-Hsien Liao

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Ting-Wei Wu

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Huan-Shuo Chang

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Ming-Hung Shih

    (Department of Electrical and Computer Engineering, Iowa State University, 2520 Osborn Drive, Ames, IA 50011, USA)

Abstract

A reservoir is an integrated water resource management infrastructure that can be used for water storage, flood control, power generation, and recreational activities. Predicting reservoir levels is critical for water supply management and can influence operations and intervention strategies. Currently, the water supply monitoring index is used to warn the water level of most reservoirs. However, there is no precise calculation method for the current water supply monitoring index to warn about the adequacy of the domestic water demand. Therefore, taking Feitsui Reservoir as an example, this study proposes a new early warning water survival index (WSI) to warn users whether there is a shortage of domestic water demand in the future. The calculation of WSI was divided into two stages. In the first stage, the daily rainfall, daily inflow, daily outflow, and daily water level of the Feitsui Reservoir were used as input variables to predict the water level of the Feitsui Reservoir by the machine learning method. In the second stage, the interpolation method was used to calculate the daily domestic water demand in Greater Taipei. Combined with the water level prediction results of the Feitsui Reservoir in the first stage, the remaining estimated days of domestic water supply from the Feitsui Reservoir to Greater Taipei City were calculated. Then, the difference between the estimated remaining days of domestic water demand and the moving average was converted by the bias ratio to obtain a new WSI. WSI can be divided into short-term bias ratios and long-term bias ratios. In this study, the degree of the bias ratio of WSI was given in three colors, namely, condition blue, condition green, and condition red, to provide users with a warning of the shortage of domestic water in the future. The research results showed that compared with the existing water supply monitoring index, the new WSI proposed in this study can faithfully present the warning of the lack of domestic water demand in the future.

Suggested Citation

  • Dong-Her Shih & Ching-Hsien Liao & Ting-Wei Wu & Huan-Shuo Chang & Ming-Hung Shih, 2022. "WSI: A New Early Warning Water Survival Index for the Domestic Water Demand," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4478-:d:985769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Al-Zahrani & Amin Abo-Monasar, 2015. "Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3651-3662, August.
    2. S. G. M. Fifield & D. M. Power & D. G. S. Knipe, 2008. "The performance of moving average rules in emerging stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 18(19), pages 1515-1532.
    3. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Ashu Jain & Ashish Kumar Varshney & Umesh Chandra Joshi, 2001. "Short-Term Water Demand Forecast Modelling at IIT Kanpur Using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 299-321, October.
    5. Hao-Han Tsao & Yih-Guang Leu & Li-Fen Chou & Chao-Yang Tsao, 2021. "A Method of Multi-Stage Reservoir Water Level Forecasting Systems: A Case Study of Techi Hydropower in Taiwan," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    7. Michelle Sapitang & Wanie M. Ridwan & Khairul Faizal Kushiar & Ali Najah Ahmed & Ahmed El-Shafie, 2020. "Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.
    2. Guanqing Liu, 2019. "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 669-704, August.
    3. J. Andrew Coutts, 2010. "Trading rules and stock returns: some further short run evidence from the Hang Seng 1997-2008," Applied Financial Economics, Taylor & Francis Journals, vol. 20(21), pages 1667-1672.
    4. Azar Niknam & Hasan Khademi Zare & Hassan Hosseininasab & Ali Mostafaeipour & Manuel Herrera, 2022. "A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use?," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
    5. Velimir Šonje & Denis Alajbeg & Zoran Bubas, 2011. "Efficient market hypothesis: is the Croatian stock market as (in)efficient as the U.S. market," Financial Theory and Practice, Institute of Public Finance, vol. 35(3), pages 301-326.
    6. Hesham I. Almujamed & Suzanne G. M. Fifield & David M. Power, 2018. "An Investigation of the Weak Form of the Efficient Markets Hypothesis for the Kuwait Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(1), pages 1-28, April.
    7. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    8. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Vigfusson, Robert, 1997. "Switching between Chartists and Fundamentalists: A Markov Regime-Switching Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 291-305, October.
    10. Ito, Akitoshi, 1999. "Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 7(3-4), pages 283-330, August.
    11. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    12. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    13. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    14. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    15. Shi Yafeng & Tao Xiangxing & Shi Yanlong & Zhu Nenghui & Ying Tingting & Peng Xun, 2020. "Can Technical Indicators Provide Information for Future Volatility: International Evidence," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 53-66, February.
    16. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    17. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    18. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    19. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    20. Bariviera, Aurelio F. & Font-Ferrer, Alejandro & Sorrosal-Forradellas, M. Teresa & Rosso, Osvaldo A., 2019. "An information theory perspective on the informational efficiency of gold price," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4478-:d:985769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.