IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i4p110-d341619.html
   My bibliography  Save this article

Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture

Author

Listed:
  • Awais Jabbar

    (Collage of Public Administration, Nanjing Agricultural University, Nanjing 210095, China)

  • Qun Wu

    (Collage of Public Administration, Nanjing Agricultural University, Nanjing 210095, China)

  • Jianchao Peng

    (Collage of Public Administration, Nanjing Agricultural University, Nanjing 210095, China)

  • Jian Zhang

    (China Research Center on Urban Resource-Based Transformation and Rural Revitalization, China University of Mining and Technology, Xuzhou 221116, China)

  • Asma Imran

    (Collage of Management Sciences, Comsats University Islamabad, Lahore 54000, Pakistan)

  • Luo Yao

    (Collage of Public Administration, Nanjing Agricultural University, Nanjing 210095, China)

Abstract

Sustainable intensification practices (SIPs) involve a process to produce high yields for existing land without affecting the environment. The significance and relevance of SIPs in a Pakistani context demands an investigation. Hence, this study takes the initiative to investigate the determinants regarding the adoption of these practices. Based on the evidence, we selected five SIPs, namely, improved seeds, organic manure, crop rotation, intercropping, and low tillage. Furthermore, this study analyzes the adoption of SIPs with randomly collected data from 612 farmers through multistage sampling. A multivariate probit model (MVP) is employed to analyze the mutually dependent adoption decisions and identify the factors associated with them. The results revealed that education, the area under cultivation, access to information, extension access, social participation, rainfall variability, and temperature increase significantly predict the adoption of SIPs. The adoption of organic manure and crop rotation was highest between all the ecological zones, whereas low tillage was the least adopted practice. Adoption intensity in mixed cropping zones was slightly higher than the other ecological zones. Moreover, the findings also reveal the important synergies amid natural resource management and input-based SIPs. Hence, the study highlights the perseverance and importance of social groups and recommends the government to formulate comprehensive policies to facilitate institutional access and elevate the adoption level amongst the farming community.

Suggested Citation

  • Awais Jabbar & Qun Wu & Jianchao Peng & Jian Zhang & Asma Imran & Luo Yao, 2020. "Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture," Land, MDPI, vol. 9(4), pages 1-16, April.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:110-:d:341619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/4/110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/4/110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gershon Feder & Lawrence J. Lau & Justin Y. Lin & Xiaopeng Luo, 1990. "The Relationship between Credit and Productivity in Chinese Agriculture: A Microeconomic Model of Disequilibrium," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(5), pages 1151-1157.
    2. Catherine Chan & Brent Sipes & Abouzeid Ayman & Xu Zhang & Patricia LaPorte & Fellipe Fernandes & Aliza Pradhan & Jacqueline Chan-Dentoni & Pravat Roul, 2017. "Efficiency of Conservation Agriculture Production Systems for Smallholders in Rain-Fed Uplands of India: A Transformative Approach to Food Security," Land, MDPI, vol. 6(3), pages 1-12, August.
    3. Nakano, Yuko & Tsusaka, Takuji W. & Aida, Takeshi & Pede, Valerien O., 2018. "Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania," World Development, Elsevier, vol. 105(C), pages 336-351.
    4. Kassie, Menale & Jaleta, Moti & Shiferaw, Bekele & Mmbando, Frank & Mekuria, Mulugetta, 2013. "Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 525-540.
    5. Clay, Daniel & Reardon, Thomas & Kangasniemi, Jaakko, 1998. "Sustainable Intensification in the Highland Tropics: Rwandan Farmers' Investments in Land Conservation and Soil Fertility," Economic Development and Cultural Change, University of Chicago Press, vol. 46(2), pages 351-377, January.
    6. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    7. Stefan Koppmair & Menale Kassie & Matin Qaim, 2017. "The influence of farm input subsidies on the adoption of natural resource management technologies," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 539-556, October.
    8. Mohammad Rondhi & Ahmad Fatikhul Khasan & Yasuhiro Mori & Takumi Kondo, 2019. "Assessing the Role of the Perceived Impact of Climate Change on National Adaptation Policy: The Case of Rice Farming in Indonesia," Land, MDPI, vol. 8(5), pages 1-21, May.
    9. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    10. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    11. Xiaoqing Dai & Lijie Pu & Fangping Rao, 2017. "Assessing the Effect of a Crop-Tree Intercropping Program on Smallholders’ Incomes in Rural Xinjiang, China," Sustainability, MDPI, vol. 9(9), pages 1-19, August.
    12. Afrakhteh, Hassan & Armand, Maryam & Bozayeh, Fatemeh Askari, 2015. "Analysis of Factors Affecting Adoption and Application of Sprinkler Irrigation by Farmers in Famenin County, Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 5(2), June.
    13. Juan Sesmero & Jacob Ricker-Gilbert & Aaron Cook, 2018. "How Do African Farm Households Respond to Changes in Current and Past Weather Patterns? A Structural Panel Data Analysis from Malawi," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 115-144.
    14. Misganaw Teshager Abeje & Atsushi Tsunekawa & Enyew Adgo & Nigussie Haregeweyn & Zerihun Nigussie & Zemen Ayalew & Asres Elias & Dessalegn Molla & Daregot Berihun, 2019. "Exploring Drivers of Livelihood Diversification and Its Effect on Adoption of Sustainable Land Management Practices in the Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    15. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    16. Priscilla Wainaina & Songporne Tongruksawattana & Matin Qaim, 2016. "Tradeoffs and complementarities in the adoption of improved seeds, fertilizer, and natural resource management technologies in Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 351-362, May.
    17. Ndiritu, S. Wagura & Kassie, Menale & Shiferaw, Bekele, 2014. "Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya," Food Policy, Elsevier, vol. 49(P1), pages 117-127.
    18. Sara Kaweesa & Saidi Mkomwa & Willibald Loiskandl, 2018. "Adoption of Conservation Agriculture in Uganda: A Case Study of the Lango Subregion," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    19. David R. Lee & Christopher B. Barrett & John G. McPeak, 2006. "Policy, technology, and management strategies for achieving sustainable agricultural intensification," Agricultural Economics, International Association of Agricultural Economists, vol. 34(2), pages 123-127, March.
    20. Oumer, Ali M. & Burton, Michael, 2018. "Drivers and Synergies in the Adoption of Sustainable Agricultural Intensification Practices: A Dynamic Perspective," 2018 Annual Meeting, August 5-7, Washington, D.C. 273871, Agricultural and Applied Economics Association.
    21. Lindumusa Myeni & Mokhele Moeletsi & Mulalo Thavhana & Mulalo Randela & Lebohang Mokoena, 2019. "Barriers Affecting Sustainable Agricultural Productivity of Smallholder Farmers in the Eastern Free State of South Africa," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awais Jabbar & Qun Wu & Jianchao Peng & Ali Sher & Asma Imran & Kunpeng Wang, 2020. "Mitigating Catastrophic Risks and Food Security Threats: Effects of Land Ownership in Southern Punjab, Pakistan," IJERPH, MDPI, vol. 17(24), pages 1-18, December.
    2. Shah, Hassnain & Siderius, Christian & Hellegers, Petra, 2021. "Limitations to adjusting growing periods in different agroecological zones of Pakistan," Agricultural Systems, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali M. Oumer & Michael Burton & Atakelty Hailu & Amin Mugera, 2020. "Sustainable agricultural intensification practices and cost efficiency in smallholder maize farms: Evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 841-856, November.
    2. Oumer, Ali M. & Burton, Michael, 2018. "Drivers and Synergies in the Adoption of Sustainable Agricultural Intensification Practices: A Dynamic Perspective," 2018 Annual Meeting, August 5-7, Washington, D.C. 273871, Agricultural and Applied Economics Association.
    3. Gebremariam, Gebrelibanos & Tesfaye, Wondimagegn, 2018. "The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia," Food Policy, Elsevier, vol. 74(C), pages 154-161.
    4. Kim, Jongwoo & Mason, Nicole M. & Snapp, Sieglinde S., 2018. "Does sustainable intensification of maize production enhance child nutrition? Evidence from rural Tanzania," 2018 Annual Meeting, August 5-7, Washington, D.C. 273906, Agricultural and Applied Economics Association.
    5. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    6. Ndiritu, S. Wagura & Kassie, Menale & Shiferaw, Bekele, 2014. "Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya," Food Policy, Elsevier, vol. 49(P1), pages 117-127.
    7. Tolulope E. Oladimeji & Oyakhilomen Oyinbo & Abubakar A. Hassan & Oseni Yusuf, 2020. "Understanding the Interdependence and Temporal Dynamics of Smallholders’ Adoption of Soil Conservation Practices: Evidence from Nigeria," Sustainability, MDPI, vol. 12(7), pages 1-21, March.
    8. Aslihan Arslan & Kristin Floress & Christine Lamanna & Leslie Lipper & Solomon Asfaw & Todd Rosenstock, 2020. "IFAD RESEARCH SERIES 63 - The adoption of improved agricultural technologies - A meta-analysis for Africa," IFAD Research Series 304758, International Fund for Agricultural Development (IFAD).
    9. Yang, Qi & Zhu, Yueji & Liu, Ling & Wang, Fang, 2021. "Land tenure stability and adoption intensity of sustainable agricultural practices: Evidence from banana farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315254, International Association of Agricultural Economists.
    10. Miftha Beshir & Menfese Tadesse & Fantaw Yimer & Nicolas Brüggemann, 2022. "Factors Affecting Adoption and Intensity of Use of Tef- Acacia decurrens -Charcoal Production Agroforestry System in Northwestern Ethiopia," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    11. Kim, Jongwoo & Mason, Nicole M. & Snapp ,Sieglinde, 2017. "Does Sustainable Intensification of Maize Production Enhance Child Nutrition? Evidence from Rural Tanzania," Feed the Future Innovation Lab for Food Security Policy Research Papers 265406, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    12. Banchayehu Tessema Assefa & Jordan Chamberlin & Martin K. van Ittersum & Pytrik Reidsma, 2021. "Usage and Impacts of Technologies and Management Practices in Ethiopian Smallholder Maize Production," Agriculture, MDPI, vol. 11(10), pages 1-19, September.
    13. Olson, David W. & Mason, Nicole M., 2017. "Maize Marketing Boards and Sustainable Intensification: Panel Survey Evidence from Kenya," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258093, Agricultural and Applied Economics Association.
    14. Asfaw, Solomon & Lipper, Leslie, 2015. "Adaptation to Climate Change and its Impacts on Food Security: Evidence from Niger," 2015 Conference, August 9-14, 2015, Milan, Italy 225667, International Association of Agricultural Economists.
    15. Theriault, Veronique & Smale, Melinda & Haider, Hamza, 2017. "How Does Gender Affect Sustainable Intensification of Cereal Production in the West African Sahel? Evidence from Burkina Faso," World Development, Elsevier, vol. 92(C), pages 177-191.
    16. Oyetunde-Usman, Zainab & Shee, Apurba & Abdoulaye, Tahirou, 2021. "Does Simultaneous Adoption of Drought Tolerant Maize Varieties and Organic Manure Impact Productivity and Welfare Outcomes of Farm-households in Nigeria?," 2021 Annual Meeting, August 1-3, Austin, Texas 313954, Agricultural and Applied Economics Association.
    17. Mutyasira, Vine & Hoag, Dana & Pendell, Dustin & Manning, Dale T. & Berhe, Melaku, 2018. "Assessing the relative sustainability of smallholder farming systems in Ethiopian highlands," Agricultural Systems, Elsevier, vol. 167(C), pages 83-91.
    18. Tschopp, Maurice & Ceddia, M. Graziano & Inguaggiato, Carla & Bardsley, Nicholas O. & Hernández, Hernán, 2020. "Understanding the adoption of sustainable silvopastoral practices in Northern Argentina: What is the role of land tenure?," Land Use Policy, Elsevier, vol. 99(C).
    19. Musa Hasen Ahmed & Kassahun Mamo Geleta & Aemro Tazeze & Hiwot Mekonnen Mesfin & Eden Andualem Tilahun, 2017. "Cropping systems diversification, improved seed, manure and inorganic fertilizer adoption by maize producers of eastern Ethiopia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    20. Yemane Asmelash Gebremariam & Joost Dessein & Beneberu Assefa Wondimagegnhu & Mark Breusers & Lutgart Lenaerts & Enyew Adgo & Zemen Ayalew & Amare Sewenet Minale & Jan Nyssen, 2021. "Determinants of Farmers’ Level of Interaction with Agricultural Extension Agencies in Northwest Ethiopia," Sustainability, MDPI, vol. 13(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:4:p:110-:d:341619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.