IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v5y2016i1p1-d62734.html
   My bibliography  Save this article

Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas

Author

Listed:
  • Christian Albert

    (Institute of Environmental Planning, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hanover, Germany
    Department of Environmental Politics, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany)

  • Johannes Hermes

    (Institute of Environmental Planning, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hanover, Germany)

  • Felix Neuendorf

    (Institute of Environmental Planning, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hanover, Germany)

  • Christina Von Haaren

    (Institute of Environmental Planning, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hanover, Germany)

  • Michael Rode

    (Institute of Environmental Planning, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hanover, Germany)

Abstract

This paper develops a method to explore how alternative scenarios of the expansion of maize production for biogas generation affect biodiversity and ecosystem services (ES). Our approach consists of four steps: (i) defining scenario targets and implementation of assumptions; (ii) simulating crop distributions across the landscape; (iii) assessing the ES impacts; and (iv) quantifying the impacts for a comparative trade-off analysis. The case study is the region of Hannover, Germany. One scenario assumes an increase of maize production in a little regulated governance system; two others reflect an increase of biogas production with either strict or flexible environmental regulation. We consider biodiversity and three ES: biogas generation, food production and the visual landscape. Our results show that the expansion of maize production results in predominantly negative impacts for other ES. However, positive effects can also be identified, i.e. , when the introduction of maize leads to higher local crop diversity and, thus, a more attractive visual landscape. The scenario of little regulation portrays more negative impacts than the other scenarios. Targeted spatial planning, implementation and appropriate governance for steering maize production into less sensitive areas is crucial for minimizing trade-offs and exploiting synergies between bioenergy and other ES.

Suggested Citation

  • Christian Albert & Johannes Hermes & Felix Neuendorf & Christina Von Haaren & Michael Rode, 2016. "Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas," Land, MDPI, vol. 5(1), pages 1-17, January.
  • Handle: RePEc:gam:jlands:v:5:y:2016:i:1:p:1-:d:62734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/5/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/5/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bredemeier, Birte & von Haaren, Christina & Rüter, Stefan & Reich, Michael & Meise, Thomas, 2015. "Evaluating the nature conservation value of field habitats: A model approach for targeting agri-environmental measures and projecting their effects," Ecological Modelling, Elsevier, vol. 295(C), pages 113-122.
    2. Christian Albert & Christina Von Haaren & Juan Carlos Vargas-Moreno & Carl Steinitz, 2015. "Teaching Scenario-Based Planning for Sustainable Landscape Development: An Evaluation of Learning Effects in the Cagliari Studio Workshop," Sustainability, MDPI, vol. 7(6), pages 1-21, May.
    3. Guillem, E.E. & Murray-Rust, D. & Robinson, D.T. & Barnes, A. & Rounsevell, M.D.A., 2015. "Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity," Agricultural Systems, Elsevier, vol. 137(C), pages 12-23.
    4. van Ittersum, Martin K. & Ewert, Frank & Heckelei, Thomas & Wery, Jacques & Alkan Olsson, Johanna & Andersen, Erling & Bezlepkina, Irina & Brouwer, Floor & Donatelli, Marcello & Flichman, Guillermo & , 2008. "Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS)," Agricultural Systems, Elsevier, vol. 96(1-3), pages 150-165, March.
    5. Roland Barthel & Tim Reichenau & Tatjana Krimly & Stephan Dabbert & Karl Schneider & Wolfram Mauser, 2012. "Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1929-1951, May.
    6. Eick von Ruschkowski & Julia Wiehe, 2008. "Balancing Bioenergy Production and Nature Conservation in Germany: Potential Synergies and Challenges," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 1(1), pages 3-20.
    7. Kirchner, Mathias & Schmidt, Johannes & Kindermann, Georg & Kulmer, Veronika & Mitter, Hermine & Prettenthaler, Franz & Rüdisser, Johannes & Schauppenlehner, Thomas & Schönhart, Martin & Strauss, Fran, 2015. "Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies," Ecological Economics, Elsevier, vol. 109(C), pages 161-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susanne Stein & Horst-Henning Steinmann & Johannes Isselstein, 2019. "Linking Arable Crop Occurrence with Site Conditions by the Use of Highly Resolved Spatial Data," Land, MDPI, vol. 8(4), pages 1-14, April.
    2. Benjamin Burkhard & Stefan Hotes & Hubert Wiggering, 2016. "Agro(Eco)System Services—Supply and Demand from Fields to Society," Land, MDPI, vol. 5(2), pages 1-4, April.
    3. Smith, A.C. & Harrison, P.A. & Pérez Soba, M. & Archaux, F. & Blicharska, M. & Egoh, B.N. & Erős, T. & Fabrega Domenech, N. & György, à .I. & Haines-Young, R. & Li, S. & Lommelen, E. & Meiresonne, , 2017. "How natural capital delivers ecosystem services: A typology derived from a systematic review," Ecosystem Services, Elsevier, vol. 26(PA), pages 111-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reidsma, Pytrik & Bakker, Martha M. & Kanellopoulos, Argyris & Alam, Shah J. & Paas, Wim & Kros, Johannes & de Vries, Wim, 2015. "Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level," Agricultural Systems, Elsevier, vol. 141(C), pages 160-173.
    2. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    3. Schönhart, Martin & Trautvetter, Helene & Parajka, Juraj & Blaschke, Alfred Paul & Hepp, Gerold & Kirchner, Mathias & Mitter, Hermine & Schmid, Erwin & Strenn, Birgit & Zessner, Matthias, 2018. "Modelled impacts of policies and climate change on land use and water quality in Austria," Land Use Policy, Elsevier, vol. 76(C), pages 500-514.
    4. Kirchner, Mathias & Schmidt, Johannes & Kindermann, Georg & Kulmer, Veronika & Mitter, Hermine & Prettenthaler, Franz & Rüdisser, Johannes & Schauppenlehner, Thomas & Schönhart, Martin & Strauss, Fran, 2015. "Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies," Ecological Economics, Elsevier, vol. 109(C), pages 161-174.
    5. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    6. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    7. Chiara Cocco & Piotr Jankowski & Michele Campagna, 2019. "An Analytic Approach to Understanding Process Dynamics in Geodesign Studies," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    8. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    9. Gerrard, Catherine L. & Padel, Susanne & Simon, Moakes, 2012. "The use of Farm Business Survey data to compare the environmental performance of organic and conventional farms," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 2(1), pages 1-12, October.
    10. Gärtner, Dominique & Keller, Armin & Schulin, Rainer, 2013. "A simple regional downscaling approach for spatially distributing land use types for agricultural land," Agricultural Systems, Elsevier, vol. 120(C), pages 10-19.
    11. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    12. Dono, Gabriele & Cortignani, Raffaele & Giraldo, Luca & Doro, Luca & Roggero, Pier Paolo, 2014. "Assessing the awareness of climate change as a factor of adaptation in the agricultural sector," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173110, Italian Association of Agricultural and Applied Economics (AIEAA).
    13. Adam Pawlewicz & Wojciech Gotkiewicz & Katarzyna Brodzińska & Katarzyna Pawlewicz & Bartosz Mickiewicz & Paweł Kluczek, 2022. "Organic Farming as an Alternative Maintenance Strategy in the Opinion of Farmers from Natura 2000 Areas," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    14. Britz, Wolfgang & Ciaian, Pavel & Gocht, Alexander & Kanellopoulos, Argyris & Kremmydas, Dimitrios & Müller, Marc & Petsakos, Athanasios & Reidsma, Pytrik, 2021. "A design for a generic and modular bio-economic farm model," Agricultural Systems, Elsevier, vol. 191(C).
    15. Eigner, Amanda E. & Nuppenau, Ernst-August, 2019. "Applied spatial approach of modelling field size changes based on a consideration of farm and landscape interrelations," Agricultural Systems, Elsevier, vol. 176(C).
    16. Valdivia, Roberto O. & Antle, John M. & Stoorvogel, Jetse J., 2012. "Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems," Agricultural Systems, Elsevier, vol. 110(C), pages 17-29.
    17. Lorenz Probst, 2022. "Higher Education for Sustainability: A Critical Review of the Empirical Evidence 2013–2020," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    18. Leng Liu & Bo Liu & Wei Song & Hao Yu, 2023. "The Relationship between Rural Sustainability and Land Use: A Bibliometric Review," Land, MDPI, vol. 12(8), pages 1-25, August.
    19. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    20. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:5:y:2016:i:1:p:1-:d:62734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.