IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i7p298-d586887.html
   My bibliography  Save this article

Modeling Credit Risk: A Category Theory Perspective

Author

Listed:
  • Cao Son Tran

    (Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia)

  • Dan Nicolau

    (Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
    Green Templeton College, University of Oxford, Oxford OX2 6HG, UK)

  • Richi Nayak

    (Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia)

  • Peter Verhoeven

    (Faculty of Business and Law, Queensland University of Technology, Brisbane, QLD 4000, Australia)

Abstract

This paper proposes a conceptual modeling framework based on category theory that serves as a tool to study common structures underlying diverse approaches to modeling credit default that at first sight may appear to have nothing in common. The framework forms the basis for an entropy-based stacking model to address issues of inconsistency and bias in classification performance. Based on the Lending Club’s peer-to-peer loans dataset and Taiwanese credit card clients dataset, relative to individual base models, the proposed entropy-based stacking model provides more consistent performance across multiple data environments and less biased performance in terms of default classification. The process itself is agnostic to the base models selected and its performance superior, regardless of the models selected.

Suggested Citation

  • Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:7:p:298-:d:586887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/7/298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/7/298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Lawrence, Edward C. & Smith, L. Douglas & Rhoades, Malcolm, 1992. "An analysis of default risk in mobile home credit," Journal of Banking & Finance, Elsevier, vol. 16(2), pages 299-312, April.
    4. Tam, KY, 1991. "Neural network models and the prediction of bank bankruptcy," Omega, Elsevier, vol. 19(5), pages 429-445.
    5. Michael Doumpos & Constantin Zopounidis, 2007. "Model combination for credit risk assessment: A stacked generalization approach," Annals of Operations Research, Springer, vol. 151(1), pages 289-306, April.
    6. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    7. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    8. Joy, O. Maurice & Tollefson, John O., 1978. "Some Clarifying Comments on Discriminant Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(1), pages 197-200, March.
    9. Pichler, Alois & Schlotter, Ruben, 2020. "Entropy based risk measures," European Journal of Operational Research, Elsevier, vol. 285(1), pages 223-236.
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. Edward I. Altman & Gabriele Sabato, 2013. "MODELING CREDIT RISK FOR SMEs: EVIDENCE FROM THE US MARKET," World Scientific Book Chapters, in: Oliviero Roggi & Edward I Altman (ed.), Managing and Measuring Risk Emerging Global Standards and Regulations After the Financial Crisis, chapter 9, pages 251-279, World Scientific Publishing Co. Pte. Ltd..
    12. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    13. Santomero, Anthony M. & Vinso, Joseph D., 1977. "Estimating the probability of failure for commercial banks and the banking system," Journal of Banking & Finance, Elsevier, vol. 1(2), pages 185-205, October.
    14. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    15. Jonkhart, Marius J. L., 1979. "On the term structure of interest rates and the risk of default : An analytical approach," Journal of Banking & Finance, Elsevier, vol. 3(3), pages 253-262, September.
    16. Maria Vassalou & Yuhang Xing, 2004. "Default Risk in Equity Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 831-868, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    2. Fejér-Király Gergely, 2015. "Bankruptcy Prediction: A Survey on Evolution, Critiques, and Solutions," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 3(1), pages 93-108, December.
    3. John W. Pacey & Toan M. Pham, 1990. "The Predictiveness of Bankruptcy Models: Methodological Problems and Evidence," Australian Journal of Management, Australian School of Business, vol. 15(2), pages 315-337, December.
    4. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    5. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    6. De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
    7. Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
    8. Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
    9. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.
    11. repec:zbw:bofrdp:2009_035 is not listed on IDEAS
    12. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    13. Demyanyk, Yuliya & Hasan, Iftekhar, 2009. "Financial crises and bank failures: a review of prediction methods," Bank of Finland Research Discussion Papers 35/2009, Bank of Finland.
    14. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    15. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    16. repec:zbw:bofitp:2004_021 is not listed on IDEAS
    17. Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
    18. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    19. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    20. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    21. Kaya, Orcun, 2022. "Determinants and consequences of SME insolvency risk during the pandemic," Economic Modelling, Elsevier, vol. 115(C).
    22. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:7:p:298-:d:586887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.