IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p817-d80383.html
   My bibliography  Save this article

Combined Production and Conversion of Energy in an Urban Integrated System

Author

Listed:
  • Davide Borelli

    (DIME—Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Università degli Studi di Genova, Via All’Opera Pia 15/A, 16145 Genova, Italy)

  • Francesco Devia

    (DIME—Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Università degli Studi di Genova, Via All’Opera Pia 15/A, 16145 Genova, Italy)

  • Ermanno Lo Cascio

    (DIME—Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Università degli Studi di Genova, Via All’Opera Pia 15/A, 16145 Genova, Italy)

  • Corrado Schenone

    (DIME—Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Università degli Studi di Genova, Via All’Opera Pia 15/A, 16145 Genova, Italy)

  • Alessandro Spoladore

    (DIME—Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Università degli Studi di Genova, Via All’Opera Pia 15/A, 16145 Genova, Italy)

Abstract

Within the framework of the European Combined Efficient Large Scale Integrated Urban Systems (CELSIUS) project, the Genoa demonstrator involves the insertion of a turbo expander (TE) to substitute the standard throttling process in a natural gas expansion station. In this way, the currently wasted mechanical energy will be recovered, while an internal combustion combined heat and power (CHP) unit will be used to meet the heating requirements of the gas before the expansion and to serve a small district heating network (DHN). Both TE and CHP are capable of delivering electric power (EP) up to 1 MW. In order to match the EP production vs demand is highly desirable to use the EP extra capacity for local EP final users, such as a nearby public school and a gas refueling station (RS). For limiting the school’s consumption of fossil fuel, it is possible to use the EP surplus generated by the demonstrator to feed a heat pump in parallel to the heating conventional system. With regard to the RS, the compressors are currently driven by electric motors, with a high-energy consumption. The integrated system gives the possibility of exploiting the surplus of electricity production and of recovering heat, which would be otherwise wasted, from the intercooling of compressed gas, thus powering the DHN through a preheating system. The result expected from this strategy is a relevant energy and emissions saving due to an integrated use of the electricity generated by the Genoese demonstrator for feeding the nearby school and RS.

Suggested Citation

  • Davide Borelli & Francesco Devia & Ermanno Lo Cascio & Corrado Schenone & Alessandro Spoladore, 2016. "Combined Production and Conversion of Energy in an Urban Integrated System," Energies, MDPI, vol. 9(10), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:817-:d:80383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.
    2. Kostowski, Wojciech J. & Usón, Sergio, 2013. "Thermoeconomic assessment of a natural gas expansion system integrated with a co-generation unit," Applied Energy, Elsevier, vol. 101(C), pages 58-66.
    3. Kristina Mjörnell & Anna Boss & Markus Lindahl & Stefan Molnar, 2014. "A Tool to Evaluate Different Renovation Alternatives with Regard to Sustainability," Sustainability, MDPI, vol. 6(7), pages 1-19, July.
    4. Giorgio Baldinelli & Francesco Bianchi & Matteo Cornicchia & Francesco D’Alessandro & Gabriele De Micheli & Gaia Gifuni & Andrea Monsignori & Maria Ruggiero & Michele Cenci & Fabrizio Bonucci & France, 2015. "MuSAE: A European Project for the Diffusion of Energy and Environmental Planning in Small-Medium Sized Municipalities," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    5. Davide Borelli & Francesco Devia & Margherita Marré Brunenghi & Corrado Schenone & Alessandro Spoladore, 2015. "Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    6. Alessandro Toscano & Filiberto Bilotti & Francesco Asdrubali & Claudia Guattari & Luca Evangelisti & Carmine Basilicata, 2016. "Recent Trends in the World Gas Market: Economical, Geopolitical and Environmental Aspects," Sustainability, MDPI, vol. 8(2), pages 1-24, February.
    7. Spoladore, Alessandro & Borelli, Davide & Devia, Francesco & Mora, Flavio & Schenone, Corrado, 2016. "Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators," Applied Energy, Elsevier, vol. 182(C), pages 488-499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woong Ko & Jong-Keun Park & Mun-Kyeom Kim & Jae-Haeng Heo, 2017. "A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea," Energies, MDPI, vol. 10(10), pages 1-24, October.
    2. Szymon Kuczyński & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej & Tomasz Włodek, 2019. "Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations," Energies, MDPI, vol. 12(4), pages 1-21, February.
    3. Lo Cascio, Ermanno & De Schutter, Bart & Schenone, Corrado, 2018. "Flexible energy harvesting from natural gas distribution networks through line-bagging," Applied Energy, Elsevier, vol. 229(C), pages 253-263.
    4. Wenshi Wang & Houqi Dong & Yangfan Luo & Changhao Zhang & Bo Zeng & Fuqiang Xu & Ming Zeng, 2021. "An Interval Optimization-Based Approach for Electric–Heat–Gas Coupled Energy System Planning Considering the Correlation between Uncertainties," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    6. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    7. Barone, Giovanni & Buonomano, Annamaria & Calise, Francesco & Forzano, Cesare & Palombo, Adolfo, 2019. "Energy recovery through natural gas turboexpander and solar collectors: Modelling and thermoeconomic optimization," Energy, Elsevier, vol. 183(C), pages 1211-1232.
    8. Woong Ko & Jinho Kim, 2019. "Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power," Energies, MDPI, vol. 12(2), pages 1-20, January.
    9. Liang Tian & Yunlei Xie & Bo Hu & Xinping Liu & Tuoyu Deng & Huanhuan Luo & Fengqiang Li, 2019. "A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage," Energies, MDPI, vol. 12(17), pages 1-27, August.
    10. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    11. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    12. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
    13. Víctor M. Soltero & Ricardo Chacartegui & Carlos Ortiz & Gonzalo Quirosa, 2018. "Techno-Economic Analysis of Rural 4th Generation Biomass District Heating," Energies, MDPI, vol. 11(12), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Borelli & Francesco Devia & Margherita Marré Brunenghi & Corrado Schenone & Alessandro Spoladore, 2015. "Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    2. Lo Cascio, Ermanno & Von Friesen, Marc Puig & Schenone, Corrado, 2018. "Optimal retrofitting of natural gas pressure reduction stations for energy recovery," Energy, Elsevier, vol. 153(C), pages 387-399.
    3. Yahya Sheikhnejad & João Simões & Nelson Martins, 2020. "Energy Harvesting by a Novel Substitution for Expansion Valves: Special Focus on City Gate Stations of High-Pressure Natural Gas Pipelines," Energies, MDPI, vol. 13(4), pages 1-18, February.
    4. Cascio, Ermanno Lo & Ma, Zhenjun & Schenone, Corrado, 2018. "Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors," Renewable Energy, Elsevier, vol. 128(PA), pages 177-187.
    5. Szymon Kuczyński & Mariusz Łaciak & Andrzej Olijnyk & Adam Szurlej & Tomasz Włodek, 2019. "Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations," Energies, MDPI, vol. 12(4), pages 1-21, February.
    6. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    7. Peep Pihelo & Kalle Kuusk & Targo Kalamees, 2020. "Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings," Energies, MDPI, vol. 13(7), pages 1-20, April.
    8. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    9. Jenny von Platten & Karl de Fine Licht & Mikael Mangold & Kristina Mjörnell, 2021. "Renovating on Unequal Premises: A Normative Framework for a Just Renovation Wave in Swedish Multifamily Housing," Energies, MDPI, vol. 14(19), pages 1-32, September.
    10. Luis F. Villalón-López & Víctor M. Ambriz-Díaz & Carlos Rubio-Maya & Oscar Chávez & Israel Y. Rosas, 2024. "Energy, Exergy, Exergoeconomic Analysis, and Optimization in a Natural Gas Decompression Station with a Vortex Tube and Geothermal Preheating," Sustainability, MDPI, vol. 16(4), pages 1-33, February.
    11. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    12. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    13. Kosa Golić & Vesna Kosorić & Siu-Kit Lau, 2020. "A Framework for Early Stages of Socially Sustainable Renovation of Multifamily Buildings with Occupants’ Participation," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    14. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    15. Luciano Barcellos-Paula & Anna María Gil-Lafuente & Aline Castro-Rezende, 2023. "Algorithm Applied to SDG13: A Case Study of Ibero-American Countries," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    16. Guoqiang Li & Yuting Wu & Yeqiang Zhang & Ruiping Zhi & Jingfu Wang & Chongfang Ma, 2016. "Performance Study on a Single-Screw Expander for a Small-Scale Pressure Recovery System," Energies, MDPI, vol. 10(1), pages 1-14, December.
    17. El Ghazzani, Badreddine & Martinez Plaza, Diego & Ait El Cadi, Radia & Ihlal, Ahmed & Abnay, Brahim & Bouabid, Khalid, 2017. "Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco," Renewable Energy, Elsevier, vol. 113(C), pages 1261-1275.
    18. Maciej Bujalski & Paweł Madejski, 2021. "Forecasting of Heat Production in Combined Heat and Power Plants Using Generalized Additive Models," Energies, MDPI, vol. 14(8), pages 1-15, April.
    19. Rosa Ana Jiménez-Expósito & Antonio Serrano-Jiménez & Pablo Fernández-Ans & Gianluca Stasi & Carmen Díaz-López & Ángela Barrios-Padura, 2022. "Promoting Sustainable and Resilient Constructive Patterns in Vulnerable Communities: Habitat for Humanity’s Sustainable Housing Prototypes in El Salvador," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    20. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:817-:d:80383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.