IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i2p226-d197084.html
   My bibliography  Save this article

Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power

Author

Listed:
  • Woong Ko

    (Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea)

  • Jinho Kim

    (School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea)

Abstract

Integrated energy systems can provide a more efficient supply than individual systems by using resources such as cogeneration. To foster efficient management of these systems, the flexible operation of cogeneration resources should be considered for the generation expansion planning model to satisfy the varying demand of energy including heat and electricity, which are interdependent and present different seasonal characteristics. We propose an optimization model of the generation expansion planning for an integrated energy system considering the feasible operation region and efficiency of a combined heat and power (CHP) resource. The proposed model is formulated as a mixed integer linear programming problem to minimize the sum of the annualized cost of the integrated energy system. Then, we set linear constraints of energy resources and describe linearized constraints of a feasible operation region and a generation efficiency of the CHP resource for application to the problem. The effectiveness of the proposed optimization problem is verified through a case study comparing with results of a conventional optimization model that uses constant heat-to-power ratio and generation efficiency of the CHP resource. Furthermore, we evaluate planning schedules and total generation efficiency profiles of the CHP resource for the compared optimization models.

Suggested Citation

  • Woong Ko & Jinho Kim, 2019. "Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power," Energies, MDPI, vol. 12(2), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:226-:d:197084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/2/226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/2/226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Borelli & Francesco Devia & Ermanno Lo Cascio & Corrado Schenone & Alessandro Spoladore, 2016. "Combined Production and Conversion of Energy in an Urban Integrated System," Energies, MDPI, vol. 9(10), pages 1-17, October.
    2. Woong Ko & Jong-Keun Park & Mun-Kyeom Kim & Jae-Haeng Heo, 2017. "A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea," Energies, MDPI, vol. 10(10), pages 1-24, October.
    3. He Huang & DaPeng Liang & Zhen Tong, 2018. "Integrated Energy Micro-Grid Planning Using Electricity, Heating and Cooling Demands," Energies, MDPI, vol. 11(10), pages 1-20, October.
    4. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    5. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    6. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    7. Binod Prasad Koirala & José Pablo Chaves Ávila & Tomás Gómez & Rudi A. Hakvoort & Paulien M. Herder, 2016. "Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    8. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    9. Hemmati, S. & Ghaderi, S.F. & Ghazizadeh, M.S., 2018. "Sustainable energy hub design under uncertainty using Benders decomposition method," Energy, Elsevier, vol. 143(C), pages 1029-1047.
    10. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    11. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    12. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    13. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    14. Lahdelma, Risto & Hakonen, Henri, 2003. "An efficient linear programming algorithm for combined heat and power production," European Journal of Operational Research, Elsevier, vol. 148(1), pages 141-151, July.
    15. Jiménez Navarro, Juan Pablo & Kavvadias, Konstantinos C. & Quoilin, Sylvain & Zucker, Andreas, 2018. "The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system," Energy, Elsevier, vol. 149(C), pages 535-549.
    16. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Hamed Jalalzad & Hossein Yektamoghadam & Rouzbeh Haghighi & Majid Dehghani & Amirhossein Nikoofard & Mahdi Khosravy & Tomonobu Senjyu, 2022. "A Game Theory Approach Using the TLBO Algorithm for Generation Expansion Planning by Applying Carbon Curtailment Policy," Energies, MDPI, vol. 15(3), pages 1-16, February.
    2. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    3. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    4. Aldarajee, Ammar H.M. & Hosseinian, Seyed H. & Vahidi, Behrooz, 2020. "A secure tri-level planner-disaster-risk-averse replanner model for enhancing the resilience of energy systems," Energy, Elsevier, vol. 204(C).
    5. Wu, C.B. & Guan, P.B. & Zhong, L.N. & Lv, J. & Hu, X.F. & Huang, G.H. & Li, C.C., 2020. "An optimized low-carbon production planning model for power industry in coal-dependent regions - A case study of Shandong, China," Energy, Elsevier, vol. 192(C).
    6. Xiangyu Kong & Jingtao Yao & Zhijun E & Xin Wang, 2019. "Generation Expansion Planning Based on Dynamic Bayesian Network Considering the Uncertainty of Renewable Energy Resources," Energies, MDPI, vol. 12(13), pages 1-20, June.
    7. Akulker, Handan & Aydin, Erdal, 2023. "Optimal design and operation of a multi-energy microgrid using mixed-integer nonlinear programming: Impact of carbon cap and trade system and taxing on equipment selections," Applied Energy, Elsevier, vol. 330(PA).
    8. Bonan Huang & Chaoming Zheng & Qiuye Sun & Ruixue Hu, 2019. "Optimal Economic Dispatch for Integrated Power and Heating Systems Considering Transmission Losses," Energies, MDPI, vol. 12(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    2. Woong Ko & Jong-Keun Park & Mun-Kyeom Kim & Jae-Haeng Heo, 2017. "A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea," Energies, MDPI, vol. 10(10), pages 1-24, October.
    3. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    4. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    5. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    7. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    8. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    9. Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
    10. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Huang, Chang & Hu, Eric & Yu, Gang & Zhang, Yumeng & Zhang, Nan, 2021. "Simulation study on a novel solar aided combined heat and power system for heat-power decoupling," Energy, Elsevier, vol. 220(C).
    11. Rong, Aiying & Lahdelma, Risto & Luh, Peter B., 2008. "Lagrangian relaxation based algorithm for trigeneration planning with storages," European Journal of Operational Research, Elsevier, vol. 188(1), pages 240-257, July.
    12. Zhu, Mengshu & Li, Jinghua, 2022. "Integrated dispatch for combined heat and power with thermal energy storage considering heat transfer delay," Energy, Elsevier, vol. 244(PB).
    13. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    14. Jun Ye & Rongxiang Yuan, 2017. "Integrated Natural Gas, Heat, and Power Dispatch Considering Wind Power and Power-to-Gas," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    15. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    16. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
    17. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
    19. Wang, Jiawei & You, Shi & Zong, Yi & Cai, Hanmin & Træholt, Chresten & Dong, Zhao Yang, 2019. "Investigation of real-time flexibility of combined heat and power plants in district heating applications," Applied Energy, Elsevier, vol. 237(C), pages 196-209.
    20. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:226-:d:197084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.