IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4170-d1253980.html
   My bibliography  Save this article

A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions

Author

Listed:
  • Hamdi Abdi

    (Electrical Engineering Department, Engineering Faculty, Razi University, Kermanshah 67144-14971, Iran)

Abstract

Combined generation units of heat and power, known as CHP units, are one of the most prominent applications of distributed generations in modern power systems. This concept refers to the simultaneous operation of two or more forms of energy from a simple primary source. Due to the numerous environmental, economic, and technical advantages, the use of this technology in modern power systems is highly emphasized. As a result, various issues of interest in the control, operation, and planning of power networks have experienced significant changes and faced important challenges. In this way, the unit commitment problem (UCP) as one of the fundamental studies in the operation of integrated power, and heat systems have experienced some major conceptual and methodological changes. This work, as a complementary review, details the CHP-based UCP (CHPbUCP) in terms of objective functions, constraints, simulation tools, and applied hardwares. Furthermore, some useful data on case studies are provided for researchers and operators. Finally, the work addresses some challenges and opens new perspectives for future research.

Suggested Citation

  • Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4170-:d:1253980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olamaei, Javad & Nazari, Mohammad Esmaeil & Bahravar, Sepideh, 2018. "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm," Energy, Elsevier, vol. 159(C), pages 737-750.
    2. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for large scale CHPED problem," Energy, Elsevier, vol. 126(C), pages 841-853.
    4. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    5. Nazari, M.E. & Ardehali, M.M., 2017. "Profit-based unit commitment of integrated CHP-thermal-heat only units in energy and spinning reserve markets with considerations for environmental CO2 emission cost and valve-point effects," Energy, Elsevier, vol. 133(C), pages 621-635.
    6. Christidis, Andreas & Koch, Christoph & Pottel, Lothar & Tsatsaronis, George, 2012. "The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets," Energy, Elsevier, vol. 41(1), pages 75-82.
    7. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    8. Jiménez Navarro, Juan Pablo & Kavvadias, Konstantinos C. & Quoilin, Sylvain & Zucker, Andreas, 2018. "The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system," Energy, Elsevier, vol. 149(C), pages 535-549.
    9. A. M. Elaiw & X. Xia & A. M. Shehata, 2013. "Hybrid DE-SQP Method for Solving Combined Heat and Power Dynamic Economic Dispatch Problem," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, September.
    10. Cynthia Boysen & Cord Kaldemeyer & Simon Hilpert & Ilja Tuschy, 2019. "Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems," Energies, MDPI, vol. 12(6), pages 1-19, March.
    11. Misaghian, M.S. & Saffari, M. & Kia, M. & Heidari, A. & Shafie-khah, M. & Catalão, J.P.S., 2018. "Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems," Energy, Elsevier, vol. 161(C), pages 396-411.
    12. Rong, Aiying & Lahdelma, Risto, 2007. "An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning," European Journal of Operational Research, Elsevier, vol. 183(1), pages 412-431, November.
    13. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    14. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    15. Lennart Merkert & Ashvar Abdoul Haime & Sören Hohmann, 2019. "Optimal Scheduling of Combined Heat and Power Generation Units Using the Thermal Inertia of the Connected District Heating Grid as Energy Storage," Energies, MDPI, vol. 12(2), pages 1-9, January.
    16. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Moretti, Luca & Martelli, Emanuele & Manzolini, Giampaolo, 2020. "An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids," Applied Energy, Elsevier, vol. 261(C).
    18. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    19. Lahdelma, Risto & Hakonen, Henri, 2003. "An efficient linear programming algorithm for combined heat and power production," European Journal of Operational Research, Elsevier, vol. 148(1), pages 141-151, July.
    20. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    21. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
    22. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    23. Domschke, Wolfgang & Drexl, Andreas, 2005. "Einführung in Operations Research," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 25118, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    2. Marshman, D.J. & Chmelyk, T. & Sidhu, M.S. & Gopaluni, R.B. & Dumont, G.A., 2010. "Energy optimization in a pulp and paper mill cogeneration facility," Applied Energy, Elsevier, vol. 87(11), pages 3514-3525, November.
    3. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    4. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    5. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    6. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    7. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2016. "An optimization method for multi-area combined heat and power production with power transmission network," Applied Energy, Elsevier, vol. 168(C), pages 248-256.
    8. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2016. "Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 421-432.
    9. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    10. Qi, Haijie & Yue, Hong & Zhang, Jiangfeng & Lo, Kwok L., 2021. "Optimisation of a smart energy hub with integration of combined heat and power, demand side response and energy storage," Energy, Elsevier, vol. 234(C).
    11. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    12. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    13. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    14. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    15. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    16. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
    17. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    18. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    19. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).
    20. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2019. "Parametric optimization of long-term multi-area heat and power production with power storage," Applied Energy, Elsevier, vol. 235(C), pages 802-812.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4170-:d:1253980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.