IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p2128-2143.html
   My bibliography  Save this article

A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives

Author

Listed:
  • Nazari-Heris, M.
  • Mohammadi-Ivatloo, B.
  • Gharehpetian, G.B.

Abstract

Combined heat and power economic dispatch (CHPED) aims to minimize the operational cost of heat and power units satisfying several equality and inequality operational and power network constraints. The CHPED should be handled considering valve-point loading impact of the conventional thermal plants, power transmission losses of the system, generation capacity limits of the production units, and heat-power dependency constraints of the cogeneration units. Several conventional optimization algorithms have been firstly presented for providing the optimal production scheduling of power and heat generation units. Recently, experience-based algorithms, which are called heuristic and meta-heuristic optimization procedures, are introduced for solving the CHPED optimization problem. In this paper, a comprehensive review on application of heuristic optimization algorithms for the solution of CHPED problem is provided. In addition, the most popular heuristic and meta-heuristic optimization algorithms are studied in this paper, and implementation of the optimization procedures for the solution of CHPED problem taking into account the objective functions and different constrains are discussed. The main contributions of the reviewed papers are studied and discussed in details. Additionally, main considerations of equality and inequality constraints handled by different research studies are reported in this paper. Five test systems are considered for evaluating the performance of different optimization techniques. Optimal solutions obtained by employment of multiple heuristic and meta-heuristic optimization methods for test instances are demonstrated and the introduced methods are compared in terms of convergence speed, attained optimal solutions, and constrains. The best optimal solutions for five test systems are provided in terms of operational cost by employment of different optimization methods.

Suggested Citation

  • Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2128-2143
    DOI: 10.1016/j.rser.2017.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117309668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2016. "An optimization method for multi-area combined heat and power production with power transmission network," Applied Energy, Elsevier, vol. 168(C), pages 248-256.
    3. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    4. Keirstead, James & Samsatli, Nouri & Shah, Nilay & Weber, Céline, 2012. "The impact of CHP (combined heat and power) planning restrictions on the efficiency of urban energy systems," Energy, Elsevier, vol. 41(1), pages 93-103.
    5. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    6. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "Hybrid Gravitational Search Algorithm-Particle Swarm Optimization with Time Varying Acceleration Coefficients for large scale CHPED problem," Energy, Elsevier, vol. 126(C), pages 841-853.
    7. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    8. Hosseini, Seyyed Soheil Sadat & Gandomi, Amir Hossein, 2010. "Discussion on "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm, by P. Subbaraj et al., Applied Energy 86 (2009) 915-921."," Applied Energy, Elsevier, vol. 87(4), pages 1459-1459, April.
    9. Kim, Jong Suk & Edgar, Thomas F., 2014. "Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming," Energy, Elsevier, vol. 77(C), pages 675-690.
    10. Shi, Bin & Yan, Lie-Xiang & Wu, Wei, 2013. "Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction," Energy, Elsevier, vol. 56(C), pages 135-143.
    11. N. Jayakumar & S. Subramanian & E.B. Elanchezhian & S. Ganesan, 2015. "An application of grey wolf optimisation for combined heat and power dispatch," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 11(2), pages 183-206.
    12. Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
    13. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    14. Rong, Aiying & Lahdelma, Risto, 2007. "An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning," European Journal of Operational Research, Elsevier, vol. 183(1), pages 412-431, November.
    15. Mellal, Mohamed Arezki & Williams, Edward J., 2015. "Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem," Energy, Elsevier, vol. 93(P2), pages 1711-1718.
    16. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    17. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    18. Nazari-Heris, M. & Mohammadi-Ivatloo, B., 2015. "Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 214-228.
    19. Adhvaryyu, P.K. & Chattopadhyay, P.K. & Bhattacharya, A., 2017. "Dynamic optimal power flow of combined heat and power system with Valve-point effect using Krill Herd algorithm," Energy, Elsevier, vol. 127(C), pages 756-767.
    20. Sadeghian, H.R. & Ardehali, M.M., 2016. "A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on Benders decomposition," Energy, Elsevier, vol. 102(C), pages 10-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    2. Ghasemi-Marzbali, Ali & Shafiei, Mohammad & Ahmadiahangar, Roya, 2023. "Day-ahead economical planning of multi-vector energy district considering demand response program," Applied Energy, Elsevier, vol. 332(C).
    3. Lai, Wenhao & Zheng, Xiaoliang & Song, Qi & Hu, Feng & Tao, Qiong & Chen, Hualiang, 2022. "Multi-objective membrane search algorithm: A new solution for economic emission dispatch," Applied Energy, Elsevier, vol. 326(C).
    4. Xue, Lin & Wang, Jianxue & Zhang, Yao & Yong, Weizhen & Qi, Jie & Li, Haotian, 2023. "Model-data-event based community integrated energy system low-carbon economic scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response," Energy, Elsevier, vol. 239(PA).
    6. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Ma, Houzhen & Liu, Chunyang & Zhao, Haoran & Zhang, Hengxu & Wang, Mengxue & Wang, Xiaobing, 2023. "A novel analytical unified energy flow calculation method for integrated energy systems based on holomorphic embedding," Applied Energy, Elsevier, vol. 344(C).
    8. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    10. Fu, Yiwei & Lu, Zongxiang & Hu, Wei & Wu, Shuang & Wang, Yiting & Dong, Ling & Zhang, Jietan, 2019. "Research on joint optimal dispatching method for hybrid power system considering system security," Applied Energy, Elsevier, vol. 238(C), pages 147-163.
    11. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    13. Fragiacomo, Petronilla & Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano, 2021. "Multi-objective optimization model for fuel cell-based poly-generation energy systems," Energy, Elsevier, vol. 237(C).
    14. Guo, Jiacheng & Liu, Zhijian & Li, Ying & Wu, Di & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage," Renewable Energy, Elsevier, vol. 182(C), pages 1182-1200.
    15. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    16. Shahbaz Hussain & Mohammed Al-Hitmi & Salman Khaliq & Asif Hussain & Muhammad Asghar Saqib, 2019. "Implementation and Comparison of Particle Swarm Optimization and Genetic Algorithm Techniques in Combined Economic Emission Dispatch of an Independent Power Plant," Energies, MDPI, vol. 12(11), pages 1-15, May.
    17. Morteza Nazari-Heris & Behnam Mohammadi-Ivatloo & Somayeh Asadi, 2020. "Optimal Operation of Multi-Carrier Energy Networks Considering Uncertain Parameters and Thermal Energy Storage," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    18. Noorollahi, Younes & Golshanfard, Aminabbas & Hashemi-Dezaki, Hamed, 2022. "A scenario-based approach for optimal operation of energy hub under different schemes and structures," Energy, Elsevier, vol. 251(C).
    19. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    20. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    21. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "A novel multi-objective stochastic risk co-optimization model of a zero-carbon multi-energy system (ZCMES) incorporating energy storage aging model and integrated demand response," Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    2. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    3. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    4. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    5. Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Siano, Pierluigi, 2020. "Optimal generation scheduling of large-scale multi-zone combined heat and power systems," Energy, Elsevier, vol. 210(C).
    6. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
    7. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    8. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    9. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    10. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    11. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    12. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    14. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    15. Yan, Bofeng & Xue, Song & Li, Yuanfei & Duan, Jinhui & Zeng, Ming, 2016. "Gas-fired combined cooling, heating and power (CCHP) in Beijing: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 118-131.
    16. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    17. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    18. Olamaei, Javad & Nazari, Mohammad Esmaeil & Bahravar, Sepideh, 2018. "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm," Energy, Elsevier, vol. 159(C), pages 737-750.
    19. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Catalão, João P.S., 2017. "New framework for optimal scheduling of combined heat and power with electric and thermal storage systems considering industrial customers inter-zonal power exchanges," Energy, Elsevier, vol. 138(C), pages 1006-1015.
    20. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2128-2143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.