IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp421-432.html
   My bibliography  Save this article

Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets

Author

Listed:
  • Alipour, Manijeh
  • Zare, Kazem
  • Mohammadi-Ivatloo, Behnam

Abstract

This paper presents an optimal bidding strategy for industrial consumers with cogeneration facilities, power-only and heat-only units to participate in day-ahead electricity market. A information gap decision theory (IGDT) technique is implemented for determining the optimal bidding strategies considering market price uncertainty. IGDT evaluates the robustness/opportunity of optimal bidding strategy under market price uncertainty considering the consumer choice of taking risk-averse or risk-taking decisions. It is confirmed that the risk-averse or risk-taking decisions might affect the expected profit and bidding curve of the consumers.

Suggested Citation

  • Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2016. "Optimal risk-constrained participation of industrial cogeneration systems in the day-ahead energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 421-432.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:421-432
    DOI: 10.1016/j.rser.2015.12.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115015191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Electricity procurement for large consumers based on Information Gap Decision Theory," Energy Policy, Elsevier, vol. 38(1), pages 234-242, January.
    2. Alipour, Manijeh & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2014. "Short-term scheduling of combined heat and power generation units in the presence of demand response programs," Energy, Elsevier, vol. 71(C), pages 289-301.
    3. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    4. Yucekaya, Ahmet, 2013. "Bidding of price taker power generators in the deregulated Turkish power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 506-514.
    5. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
    6. Christidis, Andreas & Koch, Christoph & Pottel, Lothar & Tsatsaronis, George, 2012. "The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets," Energy, Elsevier, vol. 41(1), pages 75-82.
    7. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    8. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology," Energy, Elsevier, vol. 35(7), pages 2999-3007.
    9. Warren, Peter, 2014. "A review of demand-side management policy in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 941-951.
    10. George Gross & David Finlay, 2000. "Generation Supply Bidding in Perfectly Competitive Electricity Markets," Computational and Mathematical Organization Theory, Springer, vol. 6(1), pages 83-98, May.
    11. Soroudi, Alireza & Amraee, Turaj, 2013. "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 376-384.
    12. Yousefi, Shaghayegh & Moghaddam, Mohsen Parsa & Majd, Vahid Johari, 2011. "Optimal real time pricing in an agent-based retail market using a comprehensive demand response model," Energy, Elsevier, vol. 36(9), pages 5716-5727.
    13. Leif Hanrahan, Brian & Lightbody, Gordon & Staudt, Lawrence & G. Leahy, Paul, 2014. "A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 860-869.
    14. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    15. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    16. Khan, Aftab Ahmed & Razzaq, Sohail & Khan, Asadullah & Khursheed, Fatima & Owais,, 2015. "HEMSs and enabled demand response in electricity market: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 773-785.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    2. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs," Energy, Elsevier, vol. 139(C), pages 798-817.
    3. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    4. Misaghian, M.S. & Saffari, M. & Kia, M. & Heidari, A. & Shafie-khah, M. & Catalão, J.P.S., 2018. "Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems," Energy, Elsevier, vol. 161(C), pages 396-411.
    5. Kalavani, Farshad & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2019. "Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program," Renewable Energy, Elsevier, vol. 130(C), pages 268-280.
    6. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    7. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    8. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    9. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    10. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    11. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    2. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    3. Effenberger, Frank & Hilbert, Andreas, 2016. "Towards an energy information system architecture description for industrial manufacturers: Decomposition & allocation view," Energy, Elsevier, vol. 112(C), pages 599-605.
    4. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    5. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    6. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    7. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    8. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh, 2018. "A multi-follower bilevel stochastic programming approach for energy management of combined heat and power micro-grids," Energy, Elsevier, vol. 149(C), pages 135-146.
    9. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    10. Olamaei, Javad & Nazari, Mohammad Esmaeil & Bahravar, Sepideh, 2018. "Economic environmental unit commitment for integrated CCHP-thermal-heat only system with considerations for valve-point effect based on a heuristic optimization algorithm," Energy, Elsevier, vol. 159(C), pages 737-750.
    11. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    12. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    13. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    14. Misaghian, M.S. & Saffari, M. & Kia, M. & Heidari, A. & Shafie-khah, M. & Catalão, J.P.S., 2018. "Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems," Energy, Elsevier, vol. 161(C), pages 396-411.
    15. Li, Simon & Berrio, Denering & Fang, Yanda, 2022. "Heat balance modelling and simulation of non-mixing buffer tank design for hydronic heating applications," Energy, Elsevier, vol. 244(PB).
    16. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    17. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    18. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    19. Ben-Haim, Yakov, 2021. "Feedback for energy conservation: An info-gap approach," Energy, Elsevier, vol. 223(C).
    20. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:421-432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.