IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics0360544220327961.html
   My bibliography  Save this article

Simulation study on a novel solar aided combined heat and power system for heat-power decoupling

Author

Listed:
  • Ding, Zeyu
  • Hou, Hongjuan
  • Duan, Liqiang
  • Huang, Chang
  • Hu, Eric
  • Yu, Gang
  • Zhang, Yumeng
  • Zhang, Nan

Abstract

To guarantee the space heating in the heating season, conventional combined heat and power (CHP) plants operate in a heat-controlled operation mode, resulting in restricted peak-shaving ability (PSA). To improve the CHP plant’s PSA, a novel solar aided CHP (SA-CHP) system is proposed and simulated in this paper. In the new system, solar heat could be flexibly used to generate power or to supply heat according to the heating and power demands, thereby realizing the heat-power decoupling. A set of models for the SA-CHP system is developed and validated. The PSA, the standard coal consumption (SCC) and the techno-economic performances of a 330 MWe SA-CHP system are comprehensively analyzed in this paper. The results show that the SA-CHP system can significantly improve (up to double) the PSA compared with the CHP plant under the same rated heating power. The feasible operation region area of the SA-CHP system is 74.7% larger than that of the CHP plant. The annual SCC of the SA-CHP system are 17378.23 t less than that of the CHP plant. The net annual revenue of the SA-CHP system is $2.24 M. Besides, techno-economic performances of SA-CHP systems with two different heat storage systems are compared.

Suggested Citation

  • Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Huang, Chang & Hu, Eric & Yu, Gang & Zhang, Yumeng & Zhang, Nan, 2021. "Simulation study on a novel solar aided combined heat and power system for heat-power decoupling," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220327961
    DOI: 10.1016/j.energy.2020.119689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chang & Hou, Hongjuan & Hu, Eric & Liang, Mingyu & Yang, Yongping, 2017. "Impact of power station capacities and sizes of solar field on the performance of solar aided power generation," Energy, Elsevier, vol. 139(C), pages 667-679.
    2. Zhang, Nan & Yu, Gang & Huang, Chang & Duan, Liqiang & Hou, Hongjuan & Hu, Eric & Ding, Zeyu & Wang, Jianhua, 2020. "Full-day dynamic characteristics analysis of a solar aided coal-fired power plant in fuel saving mode," Energy, Elsevier, vol. 208(C).
    3. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2019. "A review of the application performances of concentrated solar power systems," Applied Energy, Elsevier, vol. 255(C).
    4. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    5. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    6. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
    7. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    8. Ochs, Fabian & Dahash, Abdulrahman & Tosatto, Alice & Bianchi Janetti, Michele, 2020. "Techno-economic planning and construction of cost-effective large-scale hot water thermal energy storage for Renewable District heating systems," Renewable Energy, Elsevier, vol. 150(C), pages 1165-1177.
    9. Hongyu Long & Kunyao Xu & Ruilin Xu & Jianjun He, 2012. "More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China," Energies, MDPI, vol. 5(9), pages 1-16, August.
    10. Nielsen, Maria Grønnegaard & Morales, Juan Miguel & Zugno, Marco & Pedersen, Thomas Engberg & Madsen, Henrik, 2016. "Economic valuation of heat pumps and electric boilers in the Danish energy system," Applied Energy, Elsevier, vol. 167(C), pages 189-200.
    11. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
    12. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    13. Wu, Junjie & Han, Yu & Hou, Hongjuan & Sun, Yingying, 2020. "Optimization of solar field layout and flow velocity in a solar-aided power generation system," Energy, Elsevier, vol. 208(C).
    14. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    15. Hu, Kang & Chen, Lei & Chen, Qun & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2017. "Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system," Energy, Elsevier, vol. 124(C), pages 640-651.
    16. Zhang, Yuning & Tang, Ningning & Niu, Yuguang & Du, Xiaoze, 2016. "Wind energy rejection in China: Current status, reasons and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 322-344.
    17. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    2. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    3. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Zhang, Jing & Tang, Saiqiu & Yang, Mei, 2023. "Comparative study for four technologies on flexibility improvement and renewable energy accommodation of combined heat and power system," Energy, Elsevier, vol. 263(PE).
    4. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
    5. Liu, Lintong & Zhai, Rongrong & Hu, Yangdi, 2023. "Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic," Energy, Elsevier, vol. 276(C).
    6. Jin, Yuhui & Wu, Xiao & Shen, Jiong, 2022. "Power-heat coordinated control of multiple energy system for off-grid energy supply using multi-timescale distributed predictive control," Energy, Elsevier, vol. 254(PB).
    7. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Hu, Eric & Zhang, Nan & Song, Jifeng, 2022. "Performance analysis and capacity optimization of a solar aided coal-fired combined heat and power system," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Hu, Eric & Zhang, Nan & Song, Jifeng, 2022. "Performance analysis and capacity optimization of a solar aided coal-fired combined heat and power system," Energy, Elsevier, vol. 239(PB).
    2. Liu, Miaomiao & Liu, Ming & Wang, Yu & Chen, Weixiong & Yan, Junjie, 2021. "Thermodynamic optimization of coal-fired combined heat and power (CHP) systems integrated with steam ejectors to achieve heat–power decoupling," Energy, Elsevier, vol. 229(C).
    3. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    4. Qin, Jiyun & Zhang, Qinglei & Hu, Eric & Duan, Jianguo & Zhou, Ying & Zhang, Hongsheng, 2022. "Optimisation of Solar Aided Power Generation plant with storage system adopting two non-displaced extraction steam operation strategies," Energy, Elsevier, vol. 239(PA).
    5. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Zhang, Jing & Tang, Saiqiu & Yang, Mei, 2023. "Comparative study for four technologies on flexibility improvement and renewable energy accommodation of combined heat and power system," Energy, Elsevier, vol. 263(PE).
    6. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
    7. Wang, Jiawei & You, Shi & Zong, Yi & Cai, Hanmin & Træholt, Chresten & Dong, Zhao Yang, 2019. "Investigation of real-time flexibility of combined heat and power plants in district heating applications," Applied Energy, Elsevier, vol. 237(C), pages 196-209.
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    9. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    10. Huang, Chang & Madonski, Rafal & Zhang, Qi & Yan, Yixian & Zhang, Nan & Yang, Yongping, 2022. "On the use of thermal energy storage in solar-aided power generation systems," Applied Energy, Elsevier, vol. 310(C).
    11. Kouhia, Mikko & Laukkanen, Timo & Holmberg, Henrik & Ahtila, Pekka, 2019. "District heat network as a short-term energy storage," Energy, Elsevier, vol. 177(C), pages 293-303.
    12. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    13. Han, Yu & Sun, Yingying & Wu, Junjie, 2021. "A low-cost and efficient solar/coal hybrid power generation mode: Integration of non-concentrating solar energy and air preheating process," Energy, Elsevier, vol. 235(C).
    14. Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
    15. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
    16. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    17. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    20. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220327961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.