IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220314511.html
   My bibliography  Save this article

Optimization of solar field layout and flow velocity in a solar-aided power generation system

Author

Listed:
  • Wu, Junjie
  • Han, Yu
  • Hou, Hongjuan
  • Sun, Yingying

Abstract

The solar-aided power generation (SAPG) system is an efficient way to integrate solar thermal energy into the normal coal-fired power plant. This work constructed a hydraulic model of a parabolic trough solar field and updated its thermodynamic evaluation algorithm. Moreover, this work aimed to optimize the solar field layout and flow velocity of heat transfer fluid (HTF) in view of net solar-to-electricity efficiency, which deducted pump power consumption from the solar-generated electricity. Furthermore, the non-uniformity of the outlet HTF temperature in each loop was found on the basis of the proposed model. This non-uniformity threatened the safety of the solar field. The number of loops should be reduced, and the flow velocity of HTF should increase to alleviate such non-uniformity. The case study based on a typical 330 MW SAPG system indicated that the optimal solar field layout consisted of 24 loops with eight solar collector assemblies in each loop. The optimal average flow velocity of HTF was 2.33 m/s. The corresponding net solar-to-electricity efficiency was 22.83%, and the net solar-generated electricity was 8.4984 MW.

Suggested Citation

  • Wu, Junjie & Han, Yu & Hou, Hongjuan & Sun, Yingying, 2020. "Optimization of solar field layout and flow velocity in a solar-aided power generation system," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314511
    DOI: 10.1016/j.energy.2020.118344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220314511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    2. Wu, Junjie & Hou, Hongjuan & Yang, Yongping & Hu, Eric, 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity," Applied Energy, Elsevier, vol. 157(C), pages 123-133.
    3. Siva Reddy, V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant," Renewable Energy, Elsevier, vol. 39(1), pages 114-125.
    4. Hou, Hongjuan & Wu, Junjie & Yang, Yongping & Hu, Eric & Chen, Si, 2015. "Performance of a solar aided power plant in fuel saving mode," Applied Energy, Elsevier, vol. 160(C), pages 873-881.
    5. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    6. Bakos, G.C. & Tsechelidou, Ch., 2013. "Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field," Renewable Energy, Elsevier, vol. 60(C), pages 540-547.
    7. Peng, Shuo & Hong, Hui & Wang, Yanjuan & Wang, Zhaoguo & Jin, Hongguang, 2014. "Off-design thermodynamic performances on typical days of a 330MW solar aided coal-fired power plant in China," Applied Energy, Elsevier, vol. 130(C), pages 500-509.
    8. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Yu & Sun, Yingying & Wu, Junjie, 2021. "A low-cost and efficient solar/coal hybrid power generation mode: Integration of non-concentrating solar energy and air preheating process," Energy, Elsevier, vol. 235(C).
    2. Shagdar, Enkhbayar & Shuai, Yong & Lougou, Bachirou Guene & Mustafa, Azeem & Choidorj, Dashpuntsag & Tan, Heping, 2022. "New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis," Energy, Elsevier, vol. 238(PC).
    3. Qin, Jiyun & Zhang, Qinglei & Hu, Eric & Duan, Jianguo & Zhou, Ying & Zhang, Hongsheng, 2022. "Optimisation of Solar Aided Power Generation plant with storage system adopting two non-displaced extraction steam operation strategies," Energy, Elsevier, vol. 239(PA).
    4. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Huang, Chang & Hu, Eric & Yu, Gang & Zhang, Yumeng & Zhang, Nan, 2021. "Simulation study on a novel solar aided combined heat and power system for heat-power decoupling," Energy, Elsevier, vol. 220(C).
    5. Wu, Junjie & Han, Yu, 2023. "Integration strategy optimization of solar-aided combined heat and power (CHP) system," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    2. Wu, Junjie & Han, Yu, 2023. "Integration strategy optimization of solar-aided combined heat and power (CHP) system," Energy, Elsevier, vol. 263(PC).
    3. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    4. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
    5. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    6. Wu, Junjie & Hou, Hongjuan & Yang, Yongping & Hu, Eric, 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity," Applied Energy, Elsevier, vol. 157(C), pages 123-133.
    7. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    8. Zhang, Nan & Hou, Hongjuan & Yu, Gang & Hu, Eric & Duan, Liqiang & Zhao, Jin, 2019. "Simulated performance analysis of a solar aided power generation plant in fuel saving operation mode," Energy, Elsevier, vol. 166(C), pages 918-928.
    9. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Zhao, Jin & Yang, Yongping, 2019. "Stabilizing operation of a solar aided power generation (SAPG) plant by adjusting the burners’ tilt and attemperation flows in the boiler," Energy, Elsevier, vol. 173(C), pages 1208-1220.
    10. Jun Zhao & Kun Yang, 2020. "Allocating Output Electricity in a Solar-Aided Coal-Fired Power Generation System and Assessing Its CO 2 Emission Reductions in China," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    11. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Peng, Hao & Yang, Yongping & Wang, Lu & Zhao, Jin, 2019. "Performance maximization of a solar aided power generation (SAPG) plant with a direct air-cooled condenser in power-boosting mode," Energy, Elsevier, vol. 175(C), pages 891-899.
    12. Wang, Ruilin & Sun, Jie & Hong, Hui & Jin, Hongguang, 2018. "Comprehensive evaluation for different modes of solar-aided coal-fired power generation system under common framework regarding both coal-savability and efficiency-promotability," Energy, Elsevier, vol. 143(C), pages 151-167.
    13. Huang, Chang & Hou, Hongjuan & Hu, Eric & Yu, Gang & Chen, Si & Yang, Yongping, 2020. "Measures to reduce solar energy dumped in a solar aided power generation plant," Applied Energy, Elsevier, vol. 258(C).
    14. Vinod Kumar & Liqiang Duan, 2021. "Off-Design Dynamic Performance Analysis of a Solar Aided Coal-Fired Power Plant," Energies, MDPI, vol. 14(10), pages 1-16, May.
    15. Wang, Ruilin & Sun, Jie & Hong, Hui, 2019. "Proposal of solar-aided coal-fired power generation system with direct steam generation and active composite sun-tracking," Renewable Energy, Elsevier, vol. 141(C), pages 596-612.
    16. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    17. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yang, Yongping, 2020. "Performance analysis of a novel combined solar trough and tower aided coal-fired power generation system," Energy, Elsevier, vol. 201(C).
    18. Qin, Jiyun & Zhang, Qinglei & Hu, Eric & Duan, Jianguo & Zhou, Ying & Zhang, Hongsheng, 2022. "Optimisation of Solar Aided Power Generation plant with storage system adopting two non-displaced extraction steam operation strategies," Energy, Elsevier, vol. 239(PA).
    19. Yu Han & Cheng Xu & Gang Xu & Yuwen Zhang & Yongping Yang, 2017. "An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NO x Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions," Energies, MDPI, vol. 10(10), pages 1-18, September.
    20. Shagdar, Enkhbayar & Shuai, Yong & Lougou, Bachirou Guene & Mustafa, Azeem & Choidorj, Dashpuntsag & Tan, Heping, 2022. "New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.