IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp836-844.html
   My bibliography  Save this article

Study on a heat recovery system for the thermal power plant utilizing air cooling island

Author

Listed:
  • Sun, Jian
  • Fu, Lin
  • Sun, Fangtian
  • Zhang, Shigang

Abstract

A new heat recovery system for CHP (combined heat and power) systems named HRU (heat recovery unit) is presented, which could recover the low grade heat of exhausted steam from the turbine at the thermal power plant directly. Heat recovery of exhausted steam is often accomplished by recovering the heat of cooling water in current systems. Therefore, two processes of heat transfer is needed at least. However, exhausted steam could be condensed in the evaporator of HRU directly, which reduce one process of heat transfer. A special evaporator is designed condense the exhausted steam directly. Simulated results are compared to experiments, which could include the calculation of heat transfer coefficients of different parts of HRU. It is found that about 25Mw of exhausted steam is recovered by this system. HRU could be promising for conventional CHP systems, which could increase the total energy efficiency obviously and enlarge the heating capacity of a built CHP system.

Suggested Citation

  • Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:836-844
    DOI: 10.1016/j.energy.2014.07.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.
    2. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2010. "Improved district heating substation efficiency with a new control strategy," Applied Energy, Elsevier, vol. 87(6), pages 1996-2004, June.
    3. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    4. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    5. Chen, Xia & Wang, Li & Tong, Lige & Sun, Shufeng & Yue, Xianfang & Yin, Shaowu & Zheng, Lifang, 2013. "Energy saving and emission reduction of China's urban district heating," Energy Policy, Elsevier, vol. 55(C), pages 677-682.
    6. Carazas, F.J.G. & Salazar, C.H. & Souza, G.F.M., 2011. "Availability analysis of heat recovery steam generators used in thermal power plants," Energy, Elsevier, vol. 36(6), pages 3855-3870.
    7. Sun, Ruoyu & Liu, Guijian & Zheng, Liugen & Chou, Chen-Lin, 2010. "Characteristics of coal quality and their relationship with coal-forming environment: A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China," Energy, Elsevier, vol. 35(1), pages 423-435.
    8. Ozgener, Leyla & Hepbasli, Arif & Dincer, Ibrahim, 2007. "A key review on performance improvement aspects of geothermal district heating systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1675-1697, October.
    9. Morandin, Matteo & Hackl, Roman & Harvey, Simon, 2014. "Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster," Energy, Elsevier, vol. 65(C), pages 209-220.
    10. Sun, Jian & Fu, Lin & Zhang, Shigang, 2012. "A review of working fluids of absorption cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1899-1906.
    11. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
    12. Liao, Chunhui & Ertesvåg, Ivar S. & Zhao, Jianing, 2013. "Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China," Energy, Elsevier, vol. 57(C), pages 671-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Chang, Shanshan & Fu, Lin & Zhang, Shuyan, 2016. "A technology review on recovering waste heat from the condensers of large turbine units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 287-296.
    2. Shunyong Yin & Jianjun Xia & Yi Jiang, 2020. "Characteristics Analysis of the Heat-to-Power Ratio from the Supply and Demand Sides of Cities in Northern China," Energies, MDPI, vol. 13(1), pages 1-14, January.
    3. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    4. Li, Yan & Fu, Lin & Zhang, Shuyan, 2015. "Technology application of district heating system with Co-generation based on absorption heat exchange," Energy, Elsevier, vol. 90(P1), pages 663-670.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    2. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    3. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    4. Sandvall, Akram Fakhri & Ahlgren, Erik O. & Ekvall, Tomas, 2016. "System profitability of excess heat utilisation – A case-based modelling analysis," Energy, Elsevier, vol. 97(C), pages 424-434.
    5. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    6. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    7. Guelpa, Elisa & Marincioni, Ludovica, 2019. "Demand side management in district heating systems by innovative control," Energy, Elsevier, vol. 188(C).
    8. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    10. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    11. Weinberger, Gottfried & Amiri, Shahnaz & Moshfegh, Bahram, 2017. "On the benefit of integration of a district heating system with industrial excess heat: An economic and environmental analysis," Applied Energy, Elsevier, vol. 191(C), pages 454-468.
    12. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    13. Picardo, Alberto & Soltero, Victor M. & Peralta, M. Estela & Chacartegui, Ricardo, 2019. "District heating based on biogas from wastewater treatment plant," Energy, Elsevier, vol. 180(C), pages 649-664.
    14. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    15. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    16. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    17. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
    18. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    19. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.
    20. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:836-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.