IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1493-d1361150.html
   My bibliography  Save this article

Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage

Author

Listed:
  • Katarzyna Luboń

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Krakow, Poland)

  • Radosław Tarkowski

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Krakow, Poland)

Abstract

Underground hydrogen storage facilities require cushion gas to operate, which is an expensive one-time investment. Only some of this gas is recoverable after the end of UHS operation. A significant percentage of the hydrogen will remain in underground storage as non-recoverable cushion gas. Efforts must be made to reduce it. This article presents the results of modeling the cushion gas withdrawal after the end of cyclical storage operation. It was found that the amount of non-recoverable cushion gas is fundamentally influenced by the duration of the initial hydrogen filling period, the hydrogen flow rate, and the timing of the upconing occurrence. Upconing is one of the main technical barriers to hydrogen storage in deep saline aquifers. The ratio of non-recoverable cushion gas to cushion gas (NRCG/CG) decreases with an increasing amount of cushion gas. The highest ratio, 0.63, was obtained in the shortest 2-year initial filling period. The lowest ratio, 0.35, was obtained when utilizing the longest initial filling period of 4 years and employing the largest amount of cushion gas. The presented cases of cushion gas recovery can help investors decide which storage option is the most advantageous based on the criteria that are important to them.

Suggested Citation

  • Katarzyna Luboń & Radosław Tarkowski, 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage," Energies, MDPI, vol. 17(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1493-:d:1361150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    3. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    4. Tagliapietra, Simone & Zachmann, Georg & Edenhofer, Ottmar & Glachant, Jean-Michel & Linares, Pedro & Loeschel, Andreas, 2019. "The European union energy transition: Key priorities for the next five years," Energy Policy, Elsevier, vol. 132(C), pages 950-954.
    5. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Katarzyna Luboń & Radosław Tarkowski & Barbara Uliasz-Misiak, 2024. "Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers," Energies, MDPI, vol. 17(6), pages 1-14, March.
    3. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    5. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    6. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    7. Barbara Uliasz-Misiak & Jacek Misiak & Joanna Lewandowska-Śmierzchalska, 2024. "Hydrogen Storage in Porous Rocks: A Bibliometric Analysis of Research Trends," Energies, MDPI, vol. 17(4), pages 1-15, February.
    8. Inês Rolo & Vítor A. F. Costa & Francisco P. Brito, 2023. "Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges," Energies, MDPI, vol. 17(1), pages 1-74, December.
    9. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    10. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    11. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    12. Kateryna Redko & Olena Borychenko & Anatolii Cherniavskyi & Volodymyr Saienko & Serhii Dudnikov, 2023. "Comparative Analysis of Innovative Development Strategies of Fuel and Energy Complex of Ukraine and the EU Countries: International Experience," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 301-308, March.
    13. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    14. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    15. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    16. Leszek Lankof, 2020. "Assessment of Permian Zubers as the Host Rock for Deep Geological Disposal," Energies, MDPI, vol. 13(9), pages 1-32, May.
    17. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    18. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    19. Hao Lan & Guiyun Wang & Kun Zhao & Yuntang He & Tianlei Zheng, 2022. "Review on the Hydrogen Dispersion and the Burning Behavior of Fuel Cell Electric Vehicles," Energies, MDPI, vol. 15(19), pages 1-13, October.
    20. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1493-:d:1361150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.