IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p2036-d1073118.html
   My bibliography  Save this article

Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries

Author

Listed:
  • Andrew Adewale Alola

    (CREDS-Centre for Research on Digitalization and Sustainability, Inland Norway University of Applied Sciences, 2418 Elverum, Norway
    Faculty of Economics, Administrative and Social Sciences, Nisantasi University, Istanbul 34398, Turkey)

  • Tomiwa Sunday Adebayo

    (Department of Business Administration, Faculty of Economic and Administrative Science, Cyprus International University, Mersin 99010, Turkey)

  • Ifedolapo Olabisi Olanipekun

    (Department of Economics, Adeyemi College of Education, Ondo 351101, Nigeria)

Abstract

The World Energy Council has consistently formulated useful policies and ranked countries in term of their performances in environmental sustainability, energy equity, and energy security. In a novel approach, and possibly in one of the most unique studies in the World Energy Trilemma literature, the current study examines the interaction of energy efficiency and economic growth of several top-performing economies (Austria, Denmark, France, Finland, Germany, New Zealand, Sweden, Switzerland, and the United Kingdom) in respect to environmental sustainability, energy equity, and energy security. Importantly, while affirming the inappropriateness of the linear econometric approach, the study utilized the newly developed quantile-on-quantile approach to examine the dataset for the period 1990Q1 to 2018Q4. As such, the result largely indicates a significant and positive effect of economic growth toward the energy efficiency across the quantiles for the examined countries (Austria, Denmark, France, Finland, Germany, New Zealand, Sweden, Switzerland, and the United Kingdom). On the other hand, energy efficiency also impacts economic growth in most parts of the quantiles in the examined countries. However, the results show weak and negative interaction in the lower quantiles (average of 0.1–0.3) only for Denmark, Germany, and New Zealand, while the results further reveal weak and negative interaction in the middle quantile (average 0.4–0.6) for France, Finland, and Sweden. Importantly, this study presents useful economic-related policy inferences from the aspects of energy efficiency, energy security, energy equity, and environmental sustainability.

Suggested Citation

  • Andrew Adewale Alola & Tomiwa Sunday Adebayo & Ifedolapo Olabisi Olanipekun, 2023. "Examining the Energy Efficiency and Economic Growth Potential in the World Energy Trilemma Countries," Energies, MDPI, vol. 16(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2036-:d:1073118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/2036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/2036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
    2. Stern, David I., 2012. "Modeling international trends in energy efficiency," Energy Economics, Elsevier, vol. 34(6), pages 2200-2208.
    3. Akram, Rabia & Chen, Fuzhong & Khalid, Fahad & Huang, Guanhua & Irfan, Muhammad, 2021. "Heterogeneous effects of energy efficiency and renewable energy on economic growth of BRICS countries: A fixed effect panel quantile regression analysis," Energy, Elsevier, vol. 215(PB).
    4. Avik Sinha, 2015. "Modeling Energy Efficiency and Economic Growth: Evidences from India," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 96-104.
    5. Zhu, Junpeng & Lin, Boqiang, 2022. "Economic growth pressure and energy efficiency improvement: Empirical evidence from Chinese cities," Applied Energy, Elsevier, vol. 307(C).
    6. Worrell, Ernst & van Berkel, Rene & Fengqi, Zhou & Menke, Christoph & Schaeffer, Roberto & O. Williams, Robert, 2001. "Technology transfer of energy efficient technologies in industry: a review of trends and policy issues," Energy Policy, Elsevier, vol. 29(1), pages 29-43, January.
    7. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    8. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    9. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
    10. Fredrik Sjoholm, 1999. "Technology gap, competition and spillovers from direct foreign investment: Evidence from establishment data," Journal of Development Studies, Taylor & Francis Journals, vol. 36(1), pages 53-73.
    11. Stempien, J.P. & Chan, S.H., 2017. "Addressing energy trilemma via the modified Markowitz Mean-Variance Portfolio Optimization theory," Applied Energy, Elsevier, vol. 202(C), pages 228-237.
    12. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    13. Song, Lianlian & Fu, Yelin & Zhou, Peng & Lai, Kin Keung, 2017. "Measuring national energy performance via Energy Trilemma Index: A Stochastic Multicriteria Acceptability Analysis," Energy Economics, Elsevier, vol. 66(C), pages 313-319.
    14. Jing, Rui & Lin, Yufeng & Khanna, Nina & Chen, Xiang & Wang, Meng & Liu, Jiahui & Lin, Jianyi, 2021. "Balancing the Energy Trilemma in energy system planning of coastal cities," Applied Energy, Elsevier, vol. 283(C).
    15. Yilmaz Bayar & Marius Dan Gavriletea, 2019. "Energy efficiency, renewable energy, economic growth: evidence from emerging market economies," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 2221-2234, July.
    16. Lu, Yingying & Liu, Yu & Zhou, Meifang, 2017. "Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China," Energy Economics, Elsevier, vol. 62(C), pages 248-256.
    17. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    18. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    19. Lee, Chien-Chiang, 2005. "Energy consumption and GDP in developing countries: A cointegrated panel analysis," Energy Economics, Elsevier, vol. 27(3), pages 415-427, May.
    20. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    21. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    22. Ayres, Robert U. & Turton, Hal & Casten, Tom, 2007. "Energy efficiency, sustainability and economic growth," Energy, Elsevier, vol. 32(5), pages 634-648.
    23. Liu, Haiying & Khan, Irfan & Zakari, Abdulrasheed & Alharthi, Majed, 2022. "Roles of trilemma in the world energy sector and transition towards sustainable energy: A study of economic growth and the environment," Energy Policy, Elsevier, vol. 170(C).
    24. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
    25. Richard B. Howarth, 1997. "Energy Efficiency And Economic Growth," Contemporary Economic Policy, Western Economic Association International, vol. 15(4), pages 1-9, October.
    26. Shirazi, Masoud, 2022. "Assessing energy trilemma-related policies: The world's large energy user evidence," Energy Policy, Elsevier, vol. 167(C).
    27. Alola, Andrew Adewale & Olanipekun, Ifedolapo Olabisi & Shah, Muhammad Ibrahim, 2023. "Examining the drivers of alternative energy in leading energy sustainable economies: The trilemma of energy efficiency, energy intensity and renewables expenses," Renewable Energy, Elsevier, vol. 202(C), pages 1190-1197.
    28. Lawal, Adedoyin Isola & Ozturk, Ilhan & Olanipekun, Ifedolapo O. & Asaleye, Abiola John, 2020. "Examining the linkages between electricity consumption and economic growth in African economies," Energy, Elsevier, vol. 208(C).
    29. Zakari, Abdulrasheed & Khan, Irfan & Tan, Duojiao & Alvarado, Rafael & Dagar, Vishal, 2022. "Energy efficiency and sustainable development goals (SDGs)," Energy, Elsevier, vol. 239(PE).
    30. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    31. Richard G. Newell, 2010. "The role of markets and policies in delivering innovation for climate change mitigation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 253-269, Summer.
    32. Heffron, Raphael J. & McCauley, Darren & Sovacool, Benjamin K., 2015. "Resolving society's energy trilemma through the Energy Justice Metric," Energy Policy, Elsevier, vol. 87(C), pages 168-176.
    33. Gunningham, Neil, 2013. "Managing the energy trilemma: The case of Indonesia," Energy Policy, Elsevier, vol. 54(C), pages 184-193.
    34. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    35. Alola, Andrew Adewale & Akadiri, Seyi Saint, 2021. "Clean energy development in the United States amidst augmented socioeconomic aspects and country-specific policies," Renewable Energy, Elsevier, vol. 169(C), pages 221-230.
    36. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    37. Cantore, Nicola & Calì, Massimiliano & Velde, Dirk Willem te, 2016. "Does energy efficiency improve technological change and economic growth in developing countries?," Energy Policy, Elsevier, vol. 92(C), pages 279-285.
    38. Bataille, Chris & Melton, Noel, 2017. "Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012," Energy Economics, Elsevier, vol. 64(C), pages 118-130.
    39. Jeannie Oliver & Benjamin Sovacool, 2017. "The Energy Trilemma and the Smart Grid: Implications Beyond the United States," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 4(1), pages 70-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Koengkan & José Alberto Fuinhas & Fernanda Paula Oliveira & Uğur Ursavaş & Natália Moreno, 2023. "Building a Sustainable Future: How Eco-Friendly Homes Are Driving Local Economic Development in Lisbon Metropolitan Area," Energies, MDPI, vol. 16(13), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ofori, Isaac K & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 1-58.
    2. Ofori, Isaac K. & Gbolonyo, Emmanuel & Ojong, Nathanael, 2022. "Towards Inclusive Green Growth in Africa: Critical energy efficiency synergies and governance thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 365, pages 1-48.
    3. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    4. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," MPRA Paper 115379, University Library of Munich, Germany, revised 09 Nov 2022.
    5. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2023. "Foreign direct investment and inclusive green growth in Africa: Energy efficiency contingencies and thresholds," Energy Economics, Elsevier, vol. 117(C).
    6. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    7. Isaac K. Ofori & Emmanuel Y. Gbolonyo & Nathanael Ojong, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," Working Papers 22/089, European Xtramile Centre of African Studies (EXCAS).
    8. Isaac K. Ofori & Emmanuel Y. Gbolonyo & Nathanael Ojong, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," Working Papers of the African Governance and Development Institute. 22/089, African Governance and Development Institute..
    9. Alola, Andrew Adewale & Olanipekun, Ifedolapo Olabisi & Shah, Muhammad Ibrahim, 2023. "Examining the drivers of alternative energy in leading energy sustainable economies: The trilemma of energy efficiency, energy intensity and renewables expenses," Renewable Energy, Elsevier, vol. 202(C), pages 1190-1197.
    10. Wen, Jun & Okolo, Chukwuemeka Valentine & Ugwuoke, Ifeanyi Celestine & Kolani, Kibir, 2022. "Research on influencing factors of renewable energy, energy efficiency, on technological innovation. Does trade, investment and human capital development matter?," Energy Policy, Elsevier, vol. 160(C).
    11. Walheer, Barnabé, 2018. "Labour productivity growth and energy in Europe: A production-frontier approach," Energy, Elsevier, vol. 152(C), pages 129-143.
    12. Mohd Irfan & Muhammad Shahbaz, 2022. "Low-carbon energy strategies and financial development in developing economies: investigating long-run influence of credit and equity market development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-26, April.
    13. Belén del-Río & Ana Fernández-Sainz & Itziar Martinez de Alegria, 2022. "Assessing the energy trilemma through the diversity of the energy mix: the case of India," SN Business & Economics, Springer, vol. 2(9), pages 1-26, September.
    14. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    15. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    16. Wei, Zixiang & Han, Botang & Pan, Xiuzhen & Shahbaz, Muhammad & Zafar, Muhammad Wasif, 2020. "Effects of diversified openness channels on the total-factor energy efficiency in China's manufacturing sub-sectors: Evidence from trade and FDI spillovers," Energy Economics, Elsevier, vol. 90(C).
    17. Yilmaz Bayar & Marius Dan Gavriletea, 2019. "Energy efficiency, renewable energy, economic growth: evidence from emerging market economies," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 2221-2234, July.
    18. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    19. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2022. "How does energy trilemma eradication reduce carbon emissions? The role of dual environmental regulation for China," Energy Economics, Elsevier, vol. 116(C).
    20. Wang, Zhongbao & Razzaq, Asif, 2022. "Natural resources, energy efficiency transition and sustainable development: Evidence from BRICS economies," Resources Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2036-:d:1073118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.