IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1824-d1065901.html
   My bibliography  Save this article

Fluctuations of Natural Gas Prices for Households in the 2017–2022 Period—Polish Case Study

Author

Listed:
  • Anna Bohdan

    (Faculty of Economics and Management, Opole University of Technology, Luboszycka 7, 45-036 Opole, Poland)

  • Sabina Klosa

    (Faculty of Economics and Management, Opole University of Technology, Luboszycka 7, 45-036 Opole, Poland)

  • Urszula Romaniuk

    (Faculty of Economics and Management, Opole University of Technology, Luboszycka 7, 45-036 Opole, Poland)

Abstract

The considerable share of natural gas in the aggregated gross available energy clearly indicates the resource’s importance for the energy security of EU states. Natural gas shortages caused by energy crises result in the resource’s price increases in foreign markets. The condition of the global energy system translates directly to the prices of natural gas for households. The main research objectives were the analysis of prices of household natural gas in the EU, and identification of key factors affecting the prices of household natural gas in Poland and their effect on the prices established in domestic tariffs. The secondary data analysis method (desk research) was used in the research. The 2017–2022 data were acquired from Eurostat, the Polish distributor’s (PGNiG SA) tariffs, the Energy Regulatory Office and exchange information. The paper fills a research gap in the disparity of prices of natural gas supplied to final individual recipients in the EU. It was established that the sudden increases in natural gas purchase prices on energy resource exchanges translated into a similarly dynamic increase in the household gas fuel prices. The price data concerning Poland were compared to analogous data from other EU member states. It was established that in the period between the first half of 2021 and the first half of 2022, gas prices in the EU increased by over 34% on average (maximum of 150%). It was concluded that the household natural gas prices in Poland, established in the officially approved distribution tariffs of PGNiG SA, are substantially affected by two factors: energy resource purchase prices on the Polish Power Exchange (TGE), and purchase prices on foreign markets. The main reason for price increases was the unforeseen substantial changes in the conditions of conducting business activity by PGNiG SA in terms of gas fuel trading, resulting from the increase in high-methane natural gas purchase price at the TGE. On the other hand, the increases in purchase price of natural gas imported from EU or EFTA member states by 2021 have moderately translated into increases in prices established in officially approved tariffs. A similar effect of household natural gas price increase has also occurred in other EU member states but was not uniform. The effect depended on the volume of gas production and consumption in the given country, and on the diversity of gas sources that determined the resource’s purchase price.

Suggested Citation

  • Anna Bohdan & Sabina Klosa & Urszula Romaniuk, 2023. "Fluctuations of Natural Gas Prices for Households in the 2017–2022 Period—Polish Case Study," Energies, MDPI, vol. 16(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1824-:d:1065901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    2. Mills, Andrew & Wiser, Ryan & Millstein, Dev & Carvallo, Juan Pablo & Gorman, Will & Seel, Joachim & Jeong, Seongeun, 2021. "The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States," Applied Energy, Elsevier, vol. 283(C).
    3. Massimo Filippini & Nilkanth Kumar, 2021. "Gas demand in the Swiss household sector," Applied Economics Letters, Taylor & Francis Journals, vol. 28(5), pages 359-364, March.
    4. Krystyna Gomółka & Piotr Kasprzak, 2022. "Household Ability of Expenditures on Electricity and Energy Resources in the Countries That Joined the EU after 2004," Energies, MDPI, vol. 15(9), pages 1-21, April.
    5. Amirnekooei, K. & Ardehali, M.M. & Sadri, A., 2017. "Optimal energy pricing for integrated natural gas and electric power network with considerations for techno-economic constraints," Energy, Elsevier, vol. 123(C), pages 693-709.
    6. Gao, Jiti & Peng, Bin & Smyth, Russell, 2021. "On income and price elasticities for energy demand: A panel data study," Energy Economics, Elsevier, vol. 96(C).
    7. Gabriel Di Bella & Mr. Mark J Flanagan & Karim Foda & Svitlana Maslova & Alex Pienkowski & Martin Stuermer & Mr. Frederik G Toscani, 2022. "Natural Gas in Europe: The Potential Impact of Disruptions to Supply," IMF Working Papers 2022/145, International Monetary Fund.
    8. Nerlinger, Martin & Utz, Sebastian, 2022. "The impact of the Russia-Ukraine conflict on energy firms: A capital market perspective," Finance Research Letters, Elsevier, vol. 50(C).
    9. Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
    10. Scarcioffolo, Alexandre R. & Etienne, Xiaoli, 2021. "Testing directional predictability between energy prices: A quantile-based analysis," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uribe, Jorge M. & Mosquera-López, Stephania & Arenas, Oscar J., 2022. "Assessing the relationship between electricity and natural gas prices in European markets in times of distress," Energy Policy, Elsevier, vol. 166(C).
    2. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    3. Liddle, Brantley & Hasanov, Fakhri J. & Parker, Steven, 2022. "Your mileage may vary: Have road-fuel demand elasticities changed over time in middle-income countries?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 38-53.
    4. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    5. Sibylle Braungardt & Veit Bürger & Benjamin Köhler, 2021. "Carbon Pricing and Complementary Policies—Consistency of the Policy Mix for Decarbonizing Buildings in Germany," Energies, MDPI, vol. 14(21), pages 1-14, November.
    6. Simonovits, András & Kotek, Péter & Horváth, Gábor & Takácsné Tóth, Borbála, 2023. "Az energiaárak támogatása Magyarországon - egy egyszerű modell [Subsidizing energy prices in Hungary - a simple model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 589-612.
    7. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    8. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    9. Trotta, Gianluca & Hansen, Anders Rhiger & Sommer, Stephan, 2022. "The price elasticity of residential district heating demand: New evidence from a dynamic panel approach," Energy Economics, Elsevier, vol. 112(C).
    10. Hindriks, Jean & Serse, Valerio, 2022. "The incidence of VAT reforms in electricity markets: Evidence from Belgium," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    11. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Zabaloy, Maria Florencia & Viego, Valentina, 2022. "Household electricity demand in Latin America and the Caribbean: A meta-analysis of price elasticity," Utilities Policy, Elsevier, vol. 75(C).
    13. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    14. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.
    15. Mónica Meireles & Margarita Robaina & Daniel Magueta, 2021. "The Effectiveness of Environmental Taxes in Reducing CO 2 Emissions in Passenger Vehicles: The Case of Mediterranean Countries," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    16. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    17. Ivan Faiella & Luciano Lavecchia, 2021. "Households' energy demand and the effects of carbon pricing in Italy," Questioni di Economia e Finanza (Occasional Papers) 614, Bank of Italy, Economic Research and International Relations Area.
    18. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    19. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    20. Li, Yumin & Jiang, Yan & Dong, Changgui, 2023. "Electricity cross-subsidies in China: Social equity, reverse Ramsey pricing, and welfare analysis," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 403-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1824-:d:1065901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.