IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1262-d1045902.html
   My bibliography  Save this article

Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic Energetics

Author

Listed:
  • Olga Shepovalova

    (Department of Power and Heat Supply, Federal Scientific Agroengineering Center VIM (FSAC VIM), 109428 Moscow, Russia)

  • Yuri Arbuzov

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Vladimir Evdokimov

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Pavel Ilyushin

    (Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia)

  • Konstantin Suslov

    (Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia
    Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia)

Abstract

A great number of factors determining the development of photovoltaics are associated with the assessment of possible volumes of solar energy use in correlation with the technical and economic characteristics of photovoltaic equipment. An appropriate assessment of solar energy potential that applies universally to any subsequent use option still remains a crucial task. This work is devoted to the assessment and analysis of the gross, technical and economic potentials of solar energy for photovoltaics. The smart analysis includes the basic program working in the context of connection to databases and to the programs used for determining required initial data or, as a limited option, in the context of full or partial initial data input by the user. Therefore, optimally, a smart network is formed, which for the purposes of obtaining the values of potentials, uses the most up-to-date values of initial data and other required information. This work sets out the tried and tested assessment program for the potentials of solar energy available in large and medium areas. The proposed approach to the analysis of solar energy potential in a region makes it possible to secure a high degree of assessment reliability which can be used for more detailed calculations, including the potentials analysis for a specific point on the ground or a specific type of PV system.

Suggested Citation

  • Olga Shepovalova & Yuri Arbuzov & Vladimir Evdokimov & Pavel Ilyushin & Konstantin Suslov, 2023. "Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic Energetics," Energies, MDPI, vol. 16(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1262-:d:1045902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    2. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    3. Dutta, Riya & Chanda, Kironmala & Maity, Rajib, 2022. "Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis," Renewable Energy, Elsevier, vol. 188(C), pages 819-829.
    4. Andrey Rylov & Pavel Ilyushin & Aleksandr Kulikov & Konstantin Suslov, 2021. "Testing Photovoltaic Power Plants for Participation in General Primary Frequency Control under Various Topology and Operating Conditions," Energies, MDPI, vol. 14(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    2. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    3. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    4. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    5. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    6. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J., 2018. "Less than 2°C? An Economic-Environmental Evaluation of the Paris Agreement," Ecological Economics, Elsevier, vol. 146(C), pages 69-84.
    7. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    8. Aleksandr Kulikov & Pavel Ilyushin & Anton Loskutov & Konstantin Suslov & Sergey Filippov, 2022. "WSPRT Methods for Improving Power System Automation Devices in the Conditions of Distributed Generation Sources Operation," Energies, MDPI, vol. 15(22), pages 1-20, November.
    9. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    10. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    11. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    12. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    13. Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
    14. Yuanlong Cui & Jie Zhu & Stamatis Zoras & Khalid Hassan & Hui Tong, 2022. "Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis," Energies, MDPI, vol. 15(14), pages 1-12, July.
    15. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    16. Natalia Bakhtadze & Evgeny Maximov & Natalia Maximova, 2021. "Digital Identification Algorithms for Primary Frequency Control in Unified Power System," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    17. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    18. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    19. Ascher, William, 2021. "Rescuing responsible hydropower projects," Energy Policy, Elsevier, vol. 150(C).
    20. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1262-:d:1045902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.