IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7103-d1260598.html
   My bibliography  Save this article

Forecasting and Scenario Analysis of Carbon Emissions in Key Industries: A Case Study in Henan Province, China

Author

Listed:
  • Yilin Guo

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany
    Sino-German Research Institute of Carbon Neutralization and Green Development, Zhengzhou University, Zhengzhou 450001, China)

  • Zhengmeng Hou

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany)

  • Yanli Fang

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany
    Sino-German Energy Research Center, Sichuan University, Chengdu 610065, China)

  • Qichen Wang

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany
    Sino-German Research Institute of Carbon Neutralization and Green Development, Zhengzhou University, Zhengzhou 450001, China)

  • Liangchao Huang

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany
    Sino-German Research Institute of Carbon Neutralization and Green Development, Zhengzhou University, Zhengzhou 450001, China)

  • Jiashun Luo

    (Institute of Subsurface Energy Systems, Clausthal University of Technology, 38678 Clausthal Zellerfeld, Germany
    Research Centre of Energy Storage Technologies, Clausthal University of Technology, 38640 Goslar, Germany)

  • Tianle Shi

    (Sino-German Research Institute of Carbon Neutralization and Green Development, Zhengzhou University, Zhengzhou 450001, China)

  • Wei Sun

    (Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China)

Abstract

In a global context where sustainable growth is imperative, understanding carbon emissions in significant regions is essential. Henan Province, being a vital region in China for population, agriculture, industry, and energy consumption, plays a crucial role in this understanding. This study, rooted in the need to identify strategies that not only meet China’s broader carbon neutrality objectives but also offer insights regarding global sustainability models, utilizes the STIRPAT model combined with scenario analysis. The aim was to forecast carbon emission trajectories from 2020 to 2060 across the key industries—electricity, steel, cement, transportation, coal, and chemical—that are responsible for over 80% of the total emissions in Henan. The findings suggest a varied carbon peak timeline: the steel and cement industries might achieve their peak before 2025, and the transportation, coal, and chemical sectors might achieve theirs around 2030, whereas that of the power industry could be delayed until 2033. Significantly, by 2060—a landmark year for Chinese carbon neutrality ambitions—only the electricity sector in Henan shows potential for zero emissions under an extreme scenario. This study’s results underscore the importance of region-specific strategies for achieving global carbon neutrality and offer a blueprint for other populous, industrialized regions worldwide.

Suggested Citation

  • Yilin Guo & Zhengmeng Hou & Yanli Fang & Qichen Wang & Liangchao Huang & Jiashun Luo & Tianle Shi & Wei Sun, 2023. "Forecasting and Scenario Analysis of Carbon Emissions in Key Industries: A Case Study in Henan Province, China," Energies, MDPI, vol. 16(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7103-:d:1260598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    2. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    3. Paul J. Burke and Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. Geng, Zhiqiang & Zhang, Yanhui & Li, Chengfei & Han, Yongming & Cui, Yunfei & Yu, Bin, 2020. "Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature," Energy, Elsevier, vol. 194(C).
    5. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Zhibo Zhao & Tian Yuan & Xunpeng Shi & Lingdi Zhao, 2020. "Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1363-1380, October.
    3. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    4. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.
    5. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    6. Chulin Pan & Huayi Wang & Hongpeng Guo & Hong Pan, 2021. "How Do the Population Structure Changes of China Affect Carbon Emissions? An Empirical Study Based on Ridge Regression Analysis," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    7. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    8. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    9. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    10. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    11. Feipeng Guo & Linji Zhang & Zifan Wang & Shaobo Ji, 2022. "Research on Determining the Critical Influencing Factors of Carbon Emission Integrating GRA with an Improved STIRPAT Model: Taking the Yangtze River Delta as an Example," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    12. Puliafito, Salvador Enrique & Puliafito, José Luis & Grand, Mariana Conte, 2008. "Modeling population dynamics and economic growth as competing species: An application to CO2 global emissions," Ecological Economics, Elsevier, vol. 65(3), pages 602-615, April.
    13. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    14. Muhammad Azam & Zia Ur Rehman & Yusnidah Ibrahim, 2022. "Causal nexus in industrialization, urbanization, trade openness, and carbon emissions: empirical evidence from OPEC economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13990-14010, December.
    15. Marcel Probst & Caspar Sauter, 2015. "CO2 Emissions and Greenhouse Gas Policy Stringency - An Empirical Assessment," IRENE Working Papers 15-03, IRENE Institute of Economic Research.
    16. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    17. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    18. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Liquan Xu & Yong Geng & Dong Wu & Chenyi Zhang & Shijiang Xiao, 2021. "Carbon Footprint of Residents’ Housing Consumption and Its Driving Forces in China," Energies, MDPI, vol. 14(13), pages 1-16, June.
    20. Arshian Sharif, Syed Ali Raza, 2016. "Dynamic Relationship between Urbanization, Energy Consumption and Environmental Degradation in Pakistan: Evidence from Structure Break Testing," Journal of Management Sciences, Geist Science, Iqra University, Faculty of Business Administration, vol. 3(1), pages 01-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7103-:d:1260598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.