IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p552-d1023906.html
   My bibliography  Save this article

Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts

Author

Listed:
  • Tae-Hoon Kim

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea)

  • Dayeong Song

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea)

  • Jung-Sup Lee

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea)

  • Yeo-Myeong Yun

    (Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea)

Abstract

Crude hydrolytic extracellular enzymes (CHEEs) generated by a mixed culture of microorganisms during fermentation have a high potential as economically feasible biocatalysts for the hydrolysis of complex organic wastes. This study investigates the feasibility of CHEEs as substitutes for commercial enzymes based on a series of anaerobic batch tests for CH 4 production fed by pretreated waste activated sludge (WAS). The results showed that cellulase presented the highest CH 4 yield of 99.1 mL·CH 4 /g·COD of WAS among the samples pretreated with single commercial enzymes, with a yield 34% higher than that of the control sample. A higher diversity of commercial enzymes used in the pretreatment led to higher CH 4 production from WAS. The sample pretreated with a mixture of four commercial enzymes (amylase + protease + cellulase + lipase, APCL) presented a CH 4 yield of 216.0 mL·CH 4 /g·COD of WAS. The WAS prepared with CHEEs resulted in a CH 4 yield of 211.9 mL·CH 4 /g·COD of WAS, which is comparable to the performance of the sample pretreated with APCL. The results of the batch tests using pretreated WAS for different APCL concentrations showed that the CH 4 yield of WAS pretreated with CHEEs was comparable to the CH 4 yield of 0.34 g·APCL/g·COD of WAS.

Suggested Citation

  • Tae-Hoon Kim & Dayeong Song & Jung-Sup Lee & Yeo-Myeong Yun, 2023. "Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts," Energies, MDPI, vol. 16(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:552-:d:1023906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    2. Michal Sposob & Hee-Sung Moon & Dongjin Lee & Yeo-Myeong Yun, 2021. "Microbiome of Seven Full-Scale Anaerobic Digestion Plants in South Korea: Effect of Feedstock and Operational Parameters," Energies, MDPI, vol. 14(3), pages 1-11, January.
    3. Zhen, Guangyin & Lu, Xueqin & Li, Yu-You & Zhao, Youcai, 2014. "Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion," Applied Energy, Elsevier, vol. 128(C), pages 93-102.
    4. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    5. Nges, Ivo Achu & Liu, Jing, 2009. "Effects of anaerobic pre-treatment on the degradation of dewatered-sewage sludge," Renewable Energy, Elsevier, vol. 34(7), pages 1795-1800.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    2. Dejene Tsegaye & Mohammed Mazharuddin Khan & Seyoum Leta, 2023. "Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    4. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    5. Francesca Nardin & Fabrizio Mazzetto, 2014. "Mapping of Biomass Fluxes: A Method for Optimizing Biogas-Refinery of Livestock Effluents," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    6. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    7. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    8. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    9. Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2023. "Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach," Energies, MDPI, vol. 16(7), pages 1-15, March.
    10. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    12. Frauke P. C. Müller & Gerd-Christian Maack & Wolfgang Buescher, 2017. "Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant," Energies, MDPI, vol. 10(3), pages 1-11, March.
    13. Kaparaju, P. & Rintala, J., 2011. "Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland," Renewable Energy, Elsevier, vol. 36(1), pages 31-41.
    14. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    15. Agnieszka Garlicka & Monika Zubrowska-Sudol & Katarzyna Umiejewska & Otton Roubinek & Jacek Palige & Andrzej Chmielewski, 2020. "Effects of Thickened Excess Sludge Pre-Treatment Using Hydrodynamic Cavitation for Anaerobic Digestion," Energies, MDPI, vol. 13(10), pages 1-15, May.
    16. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    17. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    18. Parawira, W & Murto, M & Zvauya, R & Mattiasson, B, 2004. "Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves," Renewable Energy, Elsevier, vol. 29(11), pages 1811-1823.
    19. Uchechukwu Stella Ezealigo & Blessing Nonye Ezealigo & Francis Kemausuor & Luke Ekem Kweku Achenie & Azikiwe Peter Onwualu, 2021. "Biomass Valorization to Bioenergy: Assessment of Biomass Residues’ Availability and Bioenergy Potential in Nigeria," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    20. Amigun, B. & von Blottnitz, H., 2010. "Capacity-cost and location-cost analyses for biogas plants in Africa," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 63-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:552-:d:1023906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.