IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v145y2021ics1364032121003622.html
   My bibliography  Save this article

Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system

Author

Listed:
  • Wang, Xuezhi
  • Lei, Zhongfang
  • Shimizu, Kazuya
  • Zhang, Zhenya
  • Lee, Duu-Jong

Abstract

Anaerobic digestion (AD) is an effective biological process to recover energy from organic solid wastes. There is a growing interest in utilization of renewable or sustainable bioenergy sources as future alternatives to fossil fuels. However, low hydrolysis rate, high heterogeneity of plant cell-wall structure of lignocellulose, process instability at high organic loading rate, and low metabolic activity of microbes limit the practical application of AD of organic solid wastes. A novel nanobubble water (NBW) based-AD system has been proposed to achieve enhanced methane production from typical organic solid wastes. This review summarizes the recent NBW studies, particularly on its utilization in AD processes and its stimulating effects on microorganisms and enzyme activities. The NBW generation approaches and its unique properties are firstly reviewed; then the roles of O2 in the O2-containing gas NBW in AD are also outlined and discussed. A deep insight into the feasibility of applying NBW-based AD system in the promotion of energy production from organic solid wastes is provided. Based on the reviewed literature works, the challenges and prospects of adopting the NBW-based AD system as a promising and sustainable technology for energy recovery from organic solid wastes are highlighted.

Suggested Citation

  • Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:rensus:v:145:y:2021:i:c:s1364032121003622
    DOI: 10.1016/j.rser.2021.111074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121003622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuemei Wang & Shikun Cheng & Zifu Li & Yu Men & Jiajun Wu, 2020. "Impacts of Cellulase and Amylase on Enzymatic Hydrolysis and Methane Production in the Anaerobic Digestion of Corn Straw," Sustainability, MDPI, vol. 12(13), pages 1-12, July.
    2. Fan Zhang, 2019. "In the Dark," World Bank Publications - Books, The World Bank Group, number 30923, December.
    3. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    4. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    5. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    6. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    7. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Jordan C. Angle & Timothy H. Morin & Lindsey M. Solden & Adrienne B. Narrowe & Garrett J. Smith & Mikayla A. Borton & Camilo Rey-Sanchez & Rebecca A. Daly & Golnazalsdat Mirfenderesgi & David W. Hoyt , 2017. "Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    9. Zhen, Guangyin & Lu, Xueqin & Li, Yu-You & Zhao, Youcai, 2014. "Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion," Applied Energy, Elsevier, vol. 128(C), pages 93-102.
    10. Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    2. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    4. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    5. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    6. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Brémond, Ulysse & Bertrandias, Aude & Loisel, Denis & Jimenez, Julie & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2020. "Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants," Renewable Energy, Elsevier, vol. 149(C), pages 641-651.
    8. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Pengcheng Liu & Yunxia Pan, 2023. "The Improvement of Rice Straw Anaerobic Co-Digestion with Swine Wastewater by Solar/Fe(II)/PS Pretreatment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    10. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    13. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Afia Malik, 2021. "Corporate Governance in the State-Owned Electricity Distribution Companies," PIDE Knowledge Brief 2021:40, Pakistan Institute of Development Economics.
    15. Clément Solié & Alessandro Contestabile & Pedro Espinosa & Stefano Musardo & Sebastiano Bariselli & Chieko Huber & Alan Carleton & Camilla Bellone, 2022. "Superior Colliculus to VTA pathway controls orienting response and influences social interaction in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    17. Liu, Yang & He, Pinjing & Duan, Haowen & Shao, Liming & Lü, Fan, 2021. "Low calcium dosage favors methanation of long-chain fatty acids," Applied Energy, Elsevier, vol. 285(C).
    18. Xianghua Jiang & Xifang Cao, 2022. "Darboux transformation and novel solitons of a coupled system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 413-424, June.
    19. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
    20. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:145:y:2021:i:c:s1364032121003622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.