IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122005019.html
   My bibliography  Save this article

Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production

Author

Listed:
  • Ma, Shuaishuai
  • Li, Yuling
  • Li, Jingxue
  • Yu, Xiaona
  • Cui, Zongjun
  • Yuan, Xufeng
  • Zhu, Wanbin
  • Wang, Hongliang

Abstract

Adopting anaerobic digestion (AD) of lignocellulosic biomass to produce biomethane is an effective approach to meet the urgent demand for clean and sustainable energy in energy transition. The pretreatment kinetic mechanism is the key to enhance the lignocellulosic carbon conversion and significantly improve the efficiency of AD. Various pretreatment strategies have been proposed in the literature, while a systematical summarization of these strategies based on different driving forces is still lacking. The purpose of this review is to classify and analyze the current technologies and research achievements on lignocellulose pretreatment technologies according to different driving forces including single ones and combined ones. Features, as well as fundamental modes of conventional and recently emerged pretreatments, have been introduced. Single pretreatment methods driven by physical, chemical, or biological forces have obvious advantages and limitations for the anaerobic transformation of lignocellulosic feedstocks. Recently emerged combined pretreatment technologies powered by multiple forces have synergistic treatment effects which hold greater application potential than those driven by single forces. Besides, a comprehensive evaluation of combined pretreatments is carried out on the basis of pretreatment efficiency, cost, energy consumption, and environmental impact to detect their potential applications in the actual biogas industry. By comprehensively summarizing the current features of single and combined technologies, this review finally provides future research perspectives for biomass pretreatment.

Suggested Citation

  • Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122005019
    DOI: 10.1016/j.rser.2022.112606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeb, Iftikhar & Yousaf, Sana & Ali, Muhammad & Yasmeen, Aqsa & Khan, Anwar Zeb & Tariq, Junaid Ahmad & Zhao, Quanbao & Abbasi, Arshad Mehmood & Ahmad, Raza & Khalil, Tariq Mahmood & Yaqoob, Asim & Bil, 2022. "In-situ microaeration of anaerobic digester treating buffalo manure for enhanced biogas yield," Renewable Energy, Elsevier, vol. 181(C), pages 843-850.
    2. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    3. Tedesco, S. & Hurst, G. & Imtiaz, A. & Ratova, M. & Tosheva, L. & Kelly, P., 2020. "TiO2 supported natural zeolites as biogas enhancers through photocatalytic pre-treatment of Miscanthus x giganteous crops," Energy, Elsevier, vol. 205(C).
    4. Mancini, Gabriele & Papirio, Stefano & Lens, Piet N.L. & Esposito, Giovanni, 2018. "Increased biogas production from wheat straw by chemical pretreatments," Renewable Energy, Elsevier, vol. 119(C), pages 608-614.
    5. Yasmine Ryma Ouahabi & Kenza Bensadok & Abdeldjalil Ouahabi, 2021. "Optimization of the Biomethane Production Process by Anaerobic Digestion of Wheat Straw Using Chemical Pretreatments Coupled with Ultrasonic Disintegration," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    6. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    7. Panigrahi, Sagarika & Sharma, Hari Bhakta & Tiwari, Bikash Ranjan & Krishna, Nakka Vamsi & Ghangrekar, M.M. & Dubey, Brajesh Kumar, 2021. "Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste," Renewable Energy, Elsevier, vol. 180(C), pages 1166-1178.
    8. Lindmark, Johan & Leksell, Niklas & Schnürer, Anna & Thorin, Eva, 2012. "Effects of mechanical pre-treatment on the biogas yield from ley crop silage," Applied Energy, Elsevier, vol. 97(C), pages 498-502.
    9. Dong, Cuiying & Chen, Juan & Guan, Ruolin & Li, Xiujin & Xin, Yuefeng, 2018. "Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production," Renewable Energy, Elsevier, vol. 127(C), pages 444-451.
    10. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    11. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    12. Hashemi, Seyed Sajad & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora, 2019. "Hydrothermal pretreatment of safflower straw to enhance biogas production," Energy, Elsevier, vol. 172(C), pages 545-554.
    13. Oliva, A. & Tan, L.C. & Papirio, S. & Esposito, G. & Lens, P.N.L., 2021. "Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials," Renewable Energy, Elsevier, vol. 169(C), pages 1000-1012.
    14. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    15. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    16. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Zhang, Yalei & Chen, Xiaohua & Gu, Yu & Zhou, Xuefei, 2015. "A physicochemical method for increasing methane production from rice straw: Extrusion combined with alkali pretreatment," Applied Energy, Elsevier, vol. 160(C), pages 39-48.
    18. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    19. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    20. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    21. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    22. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    23. Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
    24. Chen, Wei-Hsin & Ye, Song-Ching & Sheen, Herng-Kuang, 2012. "Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment," Applied Energy, Elsevier, vol. 93(C), pages 237-244.
    25. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    26. Kaur, Karamjeet & Phutela, Urmila Gupta, 2016. "Enhancement of paddy straw digestibility and biogas production by sodium hydroxide-microwave pretreatment," Renewable Energy, Elsevier, vol. 92(C), pages 178-184.
    27. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    28. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    29. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    30. Duque, Aleta & Manzanares, Paloma & Ballesteros, Mercedes, 2017. "Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications," Renewable Energy, Elsevier, vol. 114(PB), pages 1427-1441.
    31. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    32. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    33. Anna Nowicka & Marcin Zieliński & Marcin Dębowski & Magda Dudek, 2021. "Progress in the Production of Biogas from Maize Silage after Acid-Heat Pretreatment," Energies, MDPI, vol. 14(23), pages 1-16, December.
    34. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Shuxia & Li, Zichen & Sun, Yong & Zhang, Jiemei & Ge, Yuanyuan & Li, Zhili, 2022. "A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    2. Amílcar Díaz-González & Magdalena Yeraldi Perez Luna & Erik Ramírez Morales & Sergio Saldaña-Trinidad & Lizeth Rojas Blanco & Sergio de la Cruz-Arreola & Bianca Yadira Pérez-Sariñana & José Billerman , 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod," Energies, MDPI, vol. 15(10), pages 1-17, May.
    3. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    4. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    5. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    7. Arthur Chevalier & Philippe Evon & Florian Monlau & Virginie Vandenbossche & Cecilia Sambusiti, 2023. "Twin-Screw Extrusion Mechanical Pretreatment for Enhancing Biomethane Production from Agro-Industrial, Agricultural and Catch Crop Biomasses," Waste, MDPI, vol. 1(2), pages 1-18, May.
    8. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    9. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    10. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    11. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    12. Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
    13. Shen, Feng & Xiong, Xinni & Fu, Junyan & Yang, Jirui & Qiu, Mo & Qi, Xinhua & Tsang, Daniel C.W., 2020. "Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Mustafa, Ahmed M. & Poulsen, Tjalfe G. & Sheng, Kuichuan, 2016. "Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion," Applied Energy, Elsevier, vol. 180(C), pages 661-671.
    15. Martin J. Taylor & Hassan A. Alabdrabalameer & Vasiliki Skoulou, 2019. "Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels," Sustainability, MDPI, vol. 11(13), pages 1-27, June.
    16. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    17. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Akinola David Olugbemide & Ana Oberlintner & Uroš Novak & Blaž Likozar, 2021. "Lignocellulosic Corn Stover Biomass Pre-Treatment by Deep Eutectic Solvents (DES) for Biomethane Production Process by Bioresource Anaerobic Digestion," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    19. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122005019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.