IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v180y2021icp1166-1178.html
   My bibliography  Save this article

Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste

Author

Listed:
  • Panigrahi, Sagarika
  • Sharma, Hari Bhakta
  • Tiwari, Bikash Ranjan
  • Krishna, Nakka Vamsi
  • Ghangrekar, M.M.
  • Dubey, Brajesh Kumar

Abstract

Electrochemical pretreatment is considered a promising technique to reduce recalcitrance nature of lignocellulosic biomass. Yet, a comprehensive knowledge on the performance of alkaline reagents in electrochemical pretreatment and the associated environmental impacts are at an early stage. The present study investigated and compared the effect of electrochemical pretreatment by using NaOH reagent (EN) and electrochemical pretreatment by using Ca(OH)2 reagent (EC). The results showed that, both pretreatment techniques elicited the structural breakdown of the biomass, as evidenced by compositional changes, supernatant properties, SEM, FTIR, and XRD analyses. The batch anaerobic digestion results revealed that the improvement in methane production was highest for the EC pretreatment (434 mL/gVS) followed by the EN pretreatment (346 mL/gVS) and the untreated yard waste (245 mL/gVS). The Modified Gompertz model showed the best fit for untreated and pretreated yard waste. The results of economic analysis confirmed the highest net profit of 8922 rupees (US$ 119.29) for EC pretreatment. The findings of life cycle analysis revealed that the net environmental performance considering the inventory used and the limitations of the system boundary was highest for EC pretreatment followed by EN pretreatment and untreated condition.

Suggested Citation

  • Panigrahi, Sagarika & Sharma, Hari Bhakta & Tiwari, Bikash Ranjan & Krishna, Nakka Vamsi & Ghangrekar, M.M. & Dubey, Brajesh Kumar, 2021. "Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste," Renewable Energy, Elsevier, vol. 180(C), pages 1166-1178.
  • Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1166-1178
    DOI: 10.1016/j.renene.2021.08.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812101291X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    2. Xiao, Chao & Fu, Qian & Liao, Qiang & Huang, Yun & Xia, Ao & Chen, Hao & Zhu, Xun, 2020. "Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion," Renewable Energy, Elsevier, vol. 151(C), pages 70-78.
    3. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    4. Vats, Neelam & Khan, Abid Ali & Ahmad, Kafeel, 2019. "Observation of biogas production by sugarcane bagasse and food waste in different composition combinations," Energy, Elsevier, vol. 185(C), pages 1100-1105.
    5. Kainthola, Jyoti & Shariq, Mohd & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2019. "Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode," Renewable Energy, Elsevier, vol. 142(C), pages 1-10.
    6. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    7. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    8. Li, Wanwu & Khalid, Habiba & Amin, Farrukh Raza & Zhang, Han & Dai, Zhuangqiang & Chen, Chang & Liu, Guangqing, 2020. "Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion," Renewable Energy, Elsevier, vol. 157(C), pages 1081-1088.
    9. Barua, Visva Bharati & Rathore, Vidhi & Kalamdhad, Ajay S., 2019. "Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment," Renewable Energy, Elsevier, vol. 134(C), pages 103-112.
    10. Feng, Kai & Wang, Qiao & Li, Huan & Zhang, Yangyang & Deng, Zhou & Liu, Jianguo & Du, Xinrui, 2020. "Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates," Renewable Energy, Elsevier, vol. 154(C), pages 385-393.
    11. Du, Jing & Qian, Yuting & Xi, Yonglan & Lü, Xiwu, 2019. "Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw," Renewable Energy, Elsevier, vol. 139(C), pages 261-267.
    12. Zhang, Yalei & Chen, Xiaohua & Gu, Yu & Zhou, Xuefei, 2015. "A physicochemical method for increasing methane production from rice straw: Extrusion combined with alkali pretreatment," Applied Energy, Elsevier, vol. 160(C), pages 39-48.
    13. Zhen, Guangyin & Lu, Xueqin & Li, Yu-You & Zhao, Youcai, 2014. "Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion," Applied Energy, Elsevier, vol. 128(C), pages 93-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.
    2. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Alexandros Eftaxias & Evangelia Anna Passa & Christos Michailidis & Christodoulos Daoutis & Apostolos Kantartzis & Vasileios Diamantis, 2022. "Residual Forest Biomass in Pinus Stands: Accumulation and Biogas Production Potential," Energies, MDPI, vol. 15(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    2. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    3. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    4. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Ma, Shuaishuai & Wang, Hongliang & Li, Longrui & Gu, Xiaohui & Zhu, Wanbin, 2021. "Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Palma-Heredia, D. & Verdaguer, M. & Molinos-Senante, M. & Poch, M. & Cugueró-Escofet, M.À., 2021. "Optimised blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study," Renewable Energy, Elsevier, vol. 168(C), pages 141-150.
    7. Héctor Alfredo López-Aguilar & Bryan Morales-Durán & David Quiroz-Cardoza & Antonino Pérez-Hernández, 2023. "Lag Phase in the Anaerobic Co-Digestion of Sargassum spp. and Organic Domestic Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    8. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Wang, Ping & Liu, Chaoqi & Chang, Juan & Yin, Qingqiang & Huang, Weiwei & Liu, Yang & Dang, Xiaowei & Gao, Tianzeng & Lu, Fushan, 2019. "Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw," Renewable Energy, Elsevier, vol. 138(C), pages 502-508.
    12. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    13. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    14. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    15. Du, Ran & Li, Chong & Lin, Weichao & Lin, Carol Sze Ki & Yan, Jianbin, 2022. "Domesticating a bacterial consortium for efficient lignocellulosic biomass conversion," Renewable Energy, Elsevier, vol. 189(C), pages 359-368.
    16. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    18. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    19. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:180:y:2021:i:c:p:1166-1178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.