IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6695-d1242662.html
   My bibliography  Save this article

Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis

Author

Listed:
  • Magdalena Skrzyniarz

    (Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland)

  • Marcin Sajdak

    (Center of New Technologies, Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 22 B Konarskiego Ave., 44-100 Gliwice, Poland)

  • Monika Zajemska

    (Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland)

  • Anna Biniek-Poskart

    (Faculty of Management, Czestochowa University of Technology, 19 B Armii Krajowej Ave., 42-200 Czestochowa, Poland)

  • Józef Iwaszko

    (Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland)

  • Andrzej Skibiński

    (Faculty of Management, Czestochowa University of Technology, 19 B Armii Krajowej Ave., 42-200 Czestochowa, Poland)

Abstract

The main goal of the study was to assess the possibility of practical use of products of pyrolysis of refuse-derived fuel (RDF), i.e., pyrolysis gas, biochar and pyrolysis oil, as an alternative to standard fossil fuels. The subject matter of the paper reaches out to the challenges faced by the global economy, not only in the context of the energy crisis, but also in the context of the energy transformation currently beginning in Europe. The increase in fuel and energy prices prompts countries to look for alternative solutions to Russian minerals. At the same time, the growing amount of municipal waste forces the implementation of solutions based on energy recovery (the amount of municipal waste per EU inhabitant in 2021 is 530 kg). One such solution is pyrolysis of RDF, i.e., fuels produced from the over-sieve fraction of municipal waste. In Poland, insufficient processing capacity of thermal waste conversion plants has led to significant surpluses of RDF (1.2 million Mg of undeveloped RDF in Poland in 2021). RDF, due to their high calorific value, can be a valuable energy resource (16–18 MJ/k). This issue is analyzed in this study.

Suggested Citation

  • Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Anna Biniek-Poskart & Józef Iwaszko & Andrzej Skibiński, 2023. "Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6695-:d:1242662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafał Ślefarski & Joanna Jójka & Paweł Czyżewski & Michał Gołębiewski & Radosław Jankowski & Jarosław Markowski & Aneta Magdziarz, 2021. "Experimental and Numerical-Driven Prediction of Automotive Shredder Residue Pyrolysis Pathways toward Gaseous Products," Energies, MDPI, vol. 14(6), pages 1-15, March.
    2. Rajca, Przemysław & Poskart, Anna & Chrubasik, Maciej & Sajdak, Marcin & Zajemska, Monika & Skibiński, Andrzej & Korombel, Anna, 2020. "Technological and economic aspect of Refuse Derived Fuel pyrolysis," Renewable Energy, Elsevier, vol. 161(C), pages 482-494.
    3. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    4. Olga Ławińska & Anna Korombel & Monika Zajemska, 2022. "Pyrolysis-Based Municipal Solid Waste Management in Poland—SWOT Analysis," Energies, MDPI, vol. 15(2), pages 1-29, January.
    5. Agnieszka Kijo-Kleczkowska & Adam Gnatowski, 2022. "Recycling of Plastic Waste, with Particular Emphasis on Thermal Methods—Review," Energies, MDPI, vol. 15(6), pages 1-21, March.
    6. Simshauser, Paul, 2023. "The 2022 energy crisis: Fuel poverty and the impact of policy interventions in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 121(C).
    7. Gabriele Di Giacomo & Pietro Romano, 2022. "Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification," Energies, MDPI, vol. 15(15), pages 1-33, August.
    8. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    9. Sun, Yongqi & Seetharaman, Seshadri & Liu, Qianyi & Zhang, Zuotai & Liu, Lili & Wang, Xidong, 2016. "Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases," Energy, Elsevier, vol. 114(C), pages 165-176.
    10. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    11. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    12. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.
    13. Nobre, Catarina & Vilarinho, Cândida & Alves, Octávio & Mendes, Benilde & Gonçalves, Margarida, 2019. "Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties," Energy, Elsevier, vol. 181(C), pages 66-76.
    14. Gałko, Grzegorz & Mazur, Izabela & Rejdak, Michał & Jagustyn, Barbara & Hrabak, Joanna & Ouadi, Miloud & Jahangiri, Hessam & Sajdak, Marcin, 2023. "Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications," Energy, Elsevier, vol. 263(PD).
    15. Smoliński, Adam & Wojtacha-Rychter, Karolina & Król, Magdalena & Magdziarczyk, Małgorzata & Polański, Jarosław & Howaniec, Natalia, 2022. "Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamza Mumtaz & Sebastian Werle & Roksana Muzyka & Szymon Sobek & Marcin Sajdak, 2024. "Oxidative Liquefaction, an Approach for Complex Plastic Waste Stream Conversion into Valuable Oxygenated Chemicals," Energies, MDPI, vol. 17(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    2. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.
    3. Anna Poskart & Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Andrzej Skibiński, 2021. "Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy," Energies, MDPI, vol. 14(18), pages 1-17, September.
    4. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Corina Pelau & Alexandra Catalina Chinie, 2018. "Econometric Model for Measuring the Impact of the Education Level of the Population on the Recycling Rate in a Circular Economy," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 20(48), pages 340-340.
    6. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    7. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    8. Konrad Siegfried & Susann Günther & Sara Mengato & Fabian Riedel & Daniela Thrän, 2023. "Boosting Biowaste Valorisation—Do We Need an Accelerated Regional Implementation of the European Law for End-of-Waste?," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    9. Emmanuel D. Adamides & Konstantinos Georgousoglou & Yannis Mouzakitis, 2023. "Designing a Flexible and Adaptive Municipal Waste Management Organisation Using the Viable System Model," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    10. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Davor Mance & Siniša Vilke & Borna Debelić, 2020. "Sustainable Governance of Coastal Areas and Tourism Impact on Waste Production: Panel Analysis of Croatian Municipalities," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    12. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    13. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    14. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    15. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    16. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    17. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    18. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
    19. Xuemeng Zhang & Chao Liu & Yuexi Chen & Guanghong Zheng & Yinguang Chen, 2022. "Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11471-11513, October.
    20. Konsta Värri & Sanna Syri, 2019. "The Possible Role of Modular Nuclear Reactors in District Heating: Case Helsinki Region," Energies, MDPI, vol. 12(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6695-:d:1242662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.