IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011136.html
   My bibliography  Save this article

Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas

Author

Listed:
  • Smoliński, Adam
  • Wojtacha-Rychter, Karolina
  • Król, Magdalena
  • Magdziarczyk, Małgorzata
  • Polański, Jarosław
  • Howaniec, Natalia

Abstract

The gasification technology of refuse-derived fuels (RDF) can represent a future alternative to the global hydrogen production and a pathway for the development of the circular economy. The paper presents an innovative way of utilizing RDF through their oxygen/steam co-gasification with bituminous coal to hydrogen rich gas. Five different RDF samples (RDF1÷RDF5) were investigated. The in-depth analyses of the co-gasification of bituminous coal blends with different amounts of RDF (10, 15 and 20%w/w) under various temperature conditions were conducted with the application of Hierarchical Clustering Analysis (HCA). The results of the research study revealed a decrease in the total gas yield as well as in the hydrogen yield observed with the increase in the RDF fraction in the fuel blend. The lowest hydrogen yield and the highest carbon conversion were noted for the co-gasification tests of coal blends with 20%w/w for all the studied RDFs. The SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) and WDXRF (Wavelength Dispersive X-ray Fluorescence) results showed a significantly higher H2 yield in RDF2 co-gasification with coal in comparison with all the remaining RDFs, due to the higher concentration of calcium in the sample. The molecular structure analysis of polymers using Fourier transform infrared spectroscopy (FTIR) demonstrated that the most prevalent synthetic polymers in RDF2 are polyethylene terephthalate and polyvinyl chloride characterized by the lowest thermal stability compared to polyethylene and polypropylene.

Suggested Citation

  • Smoliński, Adam & Wojtacha-Rychter, Karolina & Król, Magdalena & Magdziarczyk, Małgorzata & Polański, Jarosław & Howaniec, Natalia, 2022. "Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011136
    DOI: 10.1016/j.energy.2022.124210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    3. Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
    4. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    5. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    6. Howaniec, Natalia & Smoliński, Adam, 2017. "Biowaste utilization in the process of co-gasification with bituminous coal and lignite," Energy, Elsevier, vol. 118(C), pages 18-23.
    7. Lucio Zaccariello & Maria Laura Mastellone, 2015. "Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal," Energies, MDPI, vol. 8(8), pages 1-17, August.
    8. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    9. Hu, Mian & Guo, Dabin & Ma, Caifeng & Hu, Zhiquan & Zhang, Beiping & Xiao, Bo & Luo, Siyi & Wang, Jingbo, 2015. "Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture," Energy, Elsevier, vol. 90(P1), pages 857-863.
    10. Smoliński, Adam & Howaniec, Natalia & Gąsior, Rafał & Polański, Jarosław & Magdziarczyk, Małgorzata, 2021. "Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel," Energy, Elsevier, vol. 235(C).
    11. Smoliński, Adam & Stańczyk, Krzysztof & Howaniec, Natalia, 2010. "Steam gasification of selected energy crops in a fixed bed reactor," Renewable Energy, Elsevier, vol. 35(2), pages 397-404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    2. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    3. Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Anna Biniek-Poskart & Józef Iwaszko & Andrzej Skibiński, 2023. "Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis," Energies, MDPI, vol. 16(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    3. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    5. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    6. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).
    7. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).
    8. Déparrois, N. & Singh, P. & Burra, K.G. & Gupta, A.K., 2019. "Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2," Applied Energy, Elsevier, vol. 246(C), pages 1-10.
    9. Grzegorz Czerski & Katarzyna Śpiewak & Dorota Makowska & Barbora Grycova, 2023. "Study on Steam Co-Gasification of Waste Tire Char and Sewage Sludge," Energies, MDPI, vol. 16(5), pages 1-15, February.
    10. Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
    11. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    12. Ramos, Ana & Rouboa, Abel, 2020. "Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes," Renewable Energy, Elsevier, vol. 155(C), pages 1211-1221.
    13. Iwaszenko, Sebastian & Howaniec, Natalia & Smoliński, Adam, 2019. "Determination of random pore model parameters for underground coal gasification simulation," Energy, Elsevier, vol. 166(C), pages 972-978.
    14. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    15. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    16. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    17. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    18. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    19. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    20. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.