IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p857-863.html
   My bibliography  Save this article

Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture

Author

Listed:
  • Hu, Mian
  • Guo, Dabin
  • Ma, Caifeng
  • Hu, Zhiquan
  • Zhang, Beiping
  • Xiao, Bo
  • Luo, Siyi
  • Wang, Jingbo

Abstract

In order to enhance energy recovery efficiency from MSW (municipal solid waste), an in-situ steam gasification method for hydrogen production where CaO was used as CO2 sorbent and catalyst in the process was proposed. The effects of moisture content, the molar ratio of CaO to carbon in wet MSW ([Ca]/[C]) and reactor temperature on H2 yield and gas composition were investigated. The results showed that maximum hydrogen volumetric concentration (49.42 vol%) and hydrogen yield (277.67 ml/g MSW) were obtained at 40 wt.% moisture content at gasification temperature of 750 °C and [Ca]/[C] ratio of 0.7. The proposed direct gasification of wet MSW with in situ CO2 capture process may be a promising route to produce hydrogen rich fuel gas using MSW.

Suggested Citation

  • Hu, Mian & Guo, Dabin & Ma, Caifeng & Hu, Zhiquan & Zhang, Beiping & Xiao, Bo & Luo, Siyi & Wang, Jingbo, 2015. "Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture," Energy, Elsevier, vol. 90(P1), pages 857-863.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:857-863
    DOI: 10.1016/j.energy.2015.07.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215010178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Hui & Meng, AiHong & Long, YanQiu & Li, QingHai & Zhang, YanGuo, 2014. "An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 107-122.
    2. Luo, Siyi & Zhou, Yangmin & Yi, Chuijie, 2012. "Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor," Energy, Elsevier, vol. 44(1), pages 391-395.
    3. Han, Long & Wang, Qinhui & Luo, Zhongyang & Rong, Nai & Deng, Guangyi, 2013. "H2 rich gas production via pressurized fluidized bed gasification of sawdust with in situ CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 36-43.
    4. N. Florin & A. Harris, 2007. "Hydrogen production from biomass," Environment Systems and Decisions, Springer, vol. 27(1), pages 207-215, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Khosravi, Soheil & Neshat, Elaheh & Saray, Rahim Khoshbakhti, 2023. "Thermodynamic analysis of a sorption-enhanced gasification process of municipal solid waste, integrated with concentrated solar power and thermal energy storage systems for co-generation of power and ," Renewable Energy, Elsevier, vol. 214(C), pages 140-153.
    3. Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
    4. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    5. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    6. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    7. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    8. Smoliński, Adam & Wojtacha-Rychter, Karolina & Król, Magdalena & Magdziarczyk, Małgorzata & Polański, Jarosław & Howaniec, Natalia, 2022. "Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas," Energy, Elsevier, vol. 254(PA).
    9. Liu, Rui & Li, Chongcong & Zheng, Jinhao & Xue, Feilong & Yang, Mingjun & Zhang, Yan, 2023. "Hydrogen-rich syngas production via sorption-enhanced steam gasification of biomass using FexNiyCaO bi-functional materials," Energy, Elsevier, vol. 281(C).
    10. Watson, Jamison & Zhang, Yuanhui & Si, Buchun & Chen, Wan-Ting & de Souza, Raquel, 2018. "Gasification of biowaste: A critical review and outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 1-17.
    11. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Włodzimierz Szczepaniak & Monika Zabłocka-Malicka & Rafał Wysokiński & Piotr Rutkowski, 2020. "Intensity of the Process Gas Emission from the Thermal Treatment of the 60–340 mm MSW Fraction under Steam," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    13. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    14. Kamble, Alka D. & Mendhe, Vinod A. & Chavan, Prakash D. & Saxena, Vinod K., 2022. "Insights of mineral catalytic effects of high ash coal on carbon conversion in fluidized bed Co-gasification through FTIR, XRD, XRF and FE-SEM," Renewable Energy, Elsevier, vol. 183(C), pages 729-751.
    15. Anna Poskart & Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Andrzej Skibiński, 2021. "Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy," Energies, MDPI, vol. 14(18), pages 1-17, September.
    16. Aziz, Muhammad & Juangsa, Firman Bagja & Kurniawan, Winarto & Budiman, Bentang Arief, 2016. "Clean Co-production of H2 and power from low rank coal," Energy, Elsevier, vol. 116(P1), pages 489-497.
    17. Hu, Mian & Zhang, Haiyang & Ye, Zhiheng & Ma, Jiajia & Chen, Zhihua & Wang, Junliang & Wang, Cheng & Pan, Zhiyan, 2022. "Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide," Renewable Energy, Elsevier, vol. 184(C), pages 498-509.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    2. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Gao, Ningbo & Śliz, Maciej & Quan, Cui & Bieniek, Artur & Magdziarz, Aneta, 2021. "Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor," Renewable Energy, Elsevier, vol. 167(C), pages 652-661.
    4. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Król, Danuta & Poskrobko, Sławomir, 2016. "High-methane gasification of fuels from waste – Experimental identification," Energy, Elsevier, vol. 116(P1), pages 592-600.
    6. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    7. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    8. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    9. La Villetta, M. & Costa, M. & Massarotti, N., 2017. "Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 71-88.
    10. Weiguo Dong & Zhiwen Chen & Jiacong Chen & Zhao Jia Ting & Rui Zhang & Guozhao Ji & Ming Zhao, 2022. "A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes," Energies, MDPI, vol. 15(7), pages 1-14, April.
    11. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    12. Zhang, Shuai & Xiao, Rui & Zheng, Wenguang, 2014. "Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal," Applied Energy, Elsevier, vol. 130(C), pages 181-189.
    13. Noushabadi, Abolfazl Sajadi & Dashti, Amir & Ahmadijokani, Farhad & Hu, Jinguang & Mohammadi, Amir H., 2021. "Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation," Renewable Energy, Elsevier, vol. 179(C), pages 550-562.
    14. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    15. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    16. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    17. Liu, Yili & Xing, Peixuan & Liu, Jianguo, 2017. "Environmental performance evaluation of different municipal solid waste management scenarios in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 98-106.
    18. Baloyi, J. & Bello-Ochende, T. & Meyer, J.P., 2014. "Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor," Energy, Elsevier, vol. 70(C), pages 653-663.
    19. Haili Liu & Xu Zhang & Qingchao Hong, 2021. "Emission Characteristics of Pollution Gases from the Combustion of Food Waste," Energies, MDPI, vol. 14(19), pages 1-11, October.
    20. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:857-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.