IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2837-d792889.html
   My bibliography  Save this article

A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification

Author

Listed:
  • Jayesh Thaker

    (Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany)

  • Robert Höller

    (School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria)

Abstract

Sustainable energy systems rely on energy yield from renewable resources such as solar radiation and wind, which are typically not on-demand and need to be stored or immediately consumed. Solar irradiance is a highly stochastic phenomenon depending on fluctuating atmospheric conditions, in particular clouds and aerosols. The complexity of weather conditions in terms of many variable parameters and their inherent unpredictability limit the performance and accuracy of solar power forecasting models. As renewable power penetration in electricity grids increases due to the rapid increase in the installation of photovoltaics (PV) systems, the resulting challenges are amplified. A regional PV power prediction system is presented and evaluated by providing forecasts up to 72 h ahead with an hourly time resolution. The proposed approach is based on a local radiation forecast model developed by Blue Sky. In this paper, we propose a novel method of deriving forecast equations by using an irradiance classification approach to cluster the dataset. A separate equation is derived using the GEKKO optimization tool, and an algorithm is assigned for each cluster. Several other linear regressions, time series and machine learning (ML) models are applied and compared. A feature selection process is used to select the most important weather parameters for solar power generation. Finally, considering the prediction errors in each cluster, a weighted average and an average ensemble model are also developed. The focus of this paper is the comparison of the capability and performance of statistical and ML methods for producing a reliable hourly day-ahead forecast of PV power by applying different skill scores. The proposed models are evaluated, results are compared for different models and the probabilistic time series forecast is presented. Results show that the irradiance classification approach reduces the forecasting error by a considerable margin, and the proposed GEKKO optimized model outperforms other machine learning and ensemble models. These findings also emphasize the potential of ML-based methods, which perform better in low-power and high-cloud conditions, as well as the need to build an ensemble or hybrid model based on different ML algorithms to achieve improved projections.

Suggested Citation

  • Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2837-:d:792889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. E. P. Box & G. M. Jenkins & J. F. MacGregor, 1974. "Some Recent Advances in Forecasting and Control," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(2), pages 158-179, June.
    2. Konrad Bogner & Florian Pappenberger & Massimiliano Zappa, 2019. "Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    3. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    4. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    5. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    6. Visser, Lennard & AlSkaif, Tarek & van Sark, Wilfried, 2022. "Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution," Renewable Energy, Elsevier, vol. 183(C), pages 267-282.
    7. Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
    8. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    9. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & Andres Muñoz-Jimenez & Pedro M. Lara-Santillan, 2013. "Short-Term Forecasting Models for Photovoltaic Plants: Analytical versus Soft-Computing Techniques," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-9, November.
    10. Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. d'Alessandro, Vincenzo & Di Napoli, Fabio & Guerriero, Pierluigi & Daliento, Santolo, 2015. "An automated high-granularity tool for a fast evaluation of the yield of PV plants accounting for shading effects," Renewable Energy, Elsevier, vol. 83(C), pages 294-304.
    13. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    14. Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
    15. Luca Massidda & Marino Marrocu, 2017. "Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System," Energies, MDPI, vol. 10(12), pages 1-16, December.
    16. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    4. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
    5. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    6. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    7. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    8. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    9. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
    10. Thangjam, Aditya & Jaipuria, Sanjita & Dadabada, Pradeep Kumar, 2023. "Time-Varying approaches for Long-Term Electric Load Forecasting under economic shocks," Applied Energy, Elsevier, vol. 333(C).
    11. David Kaplan, 2021. "On the Quantification of Model Uncertainty: A Bayesian Perspective," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 215-238, March.
    12. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    13. Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
    14. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    15. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    16. Thitiphat Klinsuwan & Wachiraphong Ratiphaphongthon & Rabian Wangkeeree & Rattanaporn Wangkeeree & Chatchai Sirisamphanwong, 2023. "Evaluation of Machine Learning Algorithms for Supervised Anomaly Detection and Comparison between Static and Dynamic Thresholds in Photovoltaic Systems," Energies, MDPI, vol. 16(4), pages 1-22, February.
    17. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    18. Konrad Bogner & Florian Pappenberger & Massimiliano Zappa, 2019. "Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    19. Muniain, Peru & Ziel, Florian, 2020. "Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak prices," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1193-1210.
    20. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2837-:d:792889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.