IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2005-d767554.html
   My bibliography  Save this article

An Economic Approach to Size of a Renewable Energy Mix in Small Islands

Author

Listed:
  • Daniele Milone

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Domenico Curto

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Vincenzo Franzitta

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Andrea Guercio

    (Department of Engineering, University of Palermo, 90128 Palermo, Italy)

  • Maurizio Cirrincione

    (School of Engineering and Physics, University of South Pacific, Suva P.O. Box 1168, Fiji)

  • Ali Mohammadi

    (School of Engineering and Physics, University of South Pacific, Suva P.O. Box 1168, Fiji)

Abstract

The importance of renewable energy exploitation reduces the energy dependence on fossil fuels. Despite technological progress, in several remote areas and small islands the energy production is nowadays dominated by the utilization of fossil fuels. With new, increasingly stringent laws on polluting emissions and the need to lower production costs, it is necessary to exploit as many renewable sources as possible. In order to implement these considerations, it was decided to study renewable energy production. The study was carried out by estimating the energy production on a monthly and annual basis considering a mix of three plants, namely marine, solar, and wind. Simulations on wave production were carried out on a new device developed by the research team at the University of Palermo. In order to be able to perform these simulations, input climate data are required. These data are normally available in literature or obtainable by using specific GIS tools. As criterium, the Levelized Cost of Energy, normally applied to a single technology, is extended to the entire energy mix. Minimizing this parameter, the best solution is individuated, and capable of supplying 50% of the summer electrical load with renewable energy sources. The results carried out from a case study based in aeolian islands show that the solar production reaches 10.2%, the wind production reaches 45.47% and sea wave production reaches 3.04%. In this way, the diesel production decreases to 41.29%. This method can be easily applied for several small islands, estimating for several sites the ability to reduce the energy production from fossil fuels.

Suggested Citation

  • Daniele Milone & Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Maurizio Cirrincione & Ali Mohammadi, 2022. "An Economic Approach to Size of a Renewable Energy Mix in Small Islands," Energies, MDPI, vol. 15(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2005-:d:767554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    2. Alves, M. & Segurado, R. & Costa, M., 2019. "Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores," Energy, Elsevier, vol. 182(C), pages 502-510.
    3. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    4. Parrado, C. & Girard, A. & Simon, F. & Fuentealba, E., 2016. "2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile," Energy, Elsevier, vol. 94(C), pages 422-430.
    5. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    6. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Alessia Viola, 2016. "The Desalination Process Driven by Wave Energy: A Challenge for the Future," Energies, MDPI, vol. 9(12), pages 1-16, December.
    7. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    8. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    9. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.
    10. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    11. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    12. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    13. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    14. Monteforte, M. & Lo Re, C. & Ferreri, G.B., 2015. "Wave energy assessment in Sicily (Italy)," Renewable Energy, Elsevier, vol. 78(C), pages 276-287.
    15. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    16. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    17. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    18. Emmanouil, George & Galanis, George & Kalogeri, Christina & Zodiatis, George & Kallos, George, 2016. "10-year high resolution study of wind, sea waves and wave energy assessment in the Greek offshore areas," Renewable Energy, Elsevier, vol. 90(C), pages 399-419.
    19. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    20. Andaloro, Antonio Pietro Francesco & Salomone, Roberta & Andaloro, Laura & Briguglio, Nicola & Sparacia, Sergio, 2012. "Alternative energy scenarios for small islands: A case study from Salina Island (Aeolian Islands, Southern Italy)," Renewable Energy, Elsevier, vol. 47(C), pages 135-146.
    21. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Song & Yu Wang & Yong Long, 2022. "Investment and Production Strategies of Renewable Energy Power under the Quota and Green Power Certificate System," Energies, MDPI, vol. 15(11), pages 1-24, June.
    2. Francesca Battistelli & Ambra Messina & Laura Tomassetti & Cassandra Montiroli & Eros Manzo & Marco Torre & Patrizio Tratzi & Marco Segreto & Chen-Yeon Chu & Valerio Paolini & Alessandro Corsini & Fra, 2023. "Assessment of Energy, Mobility, Waste, and Water Management on Italian Small Islands," Sustainability, MDPI, vol. 15(15), pages 1-25, July.
    3. Dimitris Al. Katsaprakakis & Antonia Proka & Dimitris Zafirakis & Markos Damasiotis & Panos Kotsampopoulos & Nikos Hatziargyriou & Eirini Dakanali & George Arnaoutakis & Dimitrios Xevgenos, 2022. "Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities," Energies, MDPI, vol. 15(16), pages 1-34, August.
    4. Tatiana Potapenko & Jessica S. Döhler & Francisco Francisco & George Lavidas & Irina Temiz, 2023. "Renewable Energy Potential for Micro-Grid at Hvide Sande," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    2. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    4. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    5. Nissen, Ulrich & Harfst, Nathanael, 2019. "Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity," Energy, Elsevier, vol. 171(C), pages 1009-1016.
    6. Sanghyun Sung & Wooyong Jung, 2019. "Economic Competitiveness Evaluation of the Energy Sources: Comparison between a Financial Model and Levelized Cost of Electricity Analysis," Energies, MDPI, vol. 12(21), pages 1-21, October.
    7. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    8. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    9. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    10. Sierra, Joan Pau & White, Adam & Mösso, Cesar & Mestres, Marc, 2017. "Assessment of the intra-annual and inter-annual variability of the wave energy resource in the Bay of Biscay (France)," Energy, Elsevier, vol. 141(C), pages 853-868.
    11. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    12. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    13. Guillou, Nicolas & Chapalain, Georges, 2020. "Assessment of wave power variability and exploitation with a long-term hindcast database," Renewable Energy, Elsevier, vol. 154(C), pages 1272-1282.
    14. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    15. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    16. Quero García, Pablo & Chica Ruiz, Juan Adolfo & García Sanabria, Javier, 2020. "Blue energy and marine spatial planning in Southern Europe," Energy Policy, Elsevier, vol. 140(C).
    17. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    18. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    19. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
    20. Riccardo Squatrito & Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa, 2014. "Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies," Energies, MDPI, vol. 7(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2005-:d:767554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.