IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1931-d765660.html
   My bibliography  Save this article

Evaluating the Impact of Public Information and Training Campaigns to Improve Energy Efficiency: Findings from the Italian Industry

Author

Listed:
  • Michele Preziosi

    (Energy Efficiency Department, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Lungotevere Thaon di Revel, 76, 00196 Roma, Italy)

  • Alessandro Federici

    (Energy Efficiency Department, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Lungotevere Thaon di Revel, 76, 00196 Roma, Italy)

  • Roberto Merli

    (Department of Business Studies, Roma Tre University, Via Silvio D’Amico 77, 00145 Roma, Italy)

Abstract

Energy efficiency is a pillar for the energy system transition and for reaching the Sustainable Development Goals. In the light of the “energy efficiency first!” principle, European member states enforce policies to spread energy saving throughout the whole energy chain involving both citizens and industries. In this context, information and training campaigns arise as valuable support tools to disseminate energy efficiency and, therefore, for reducing energy consumption. Although various studies have evaluated the impact of information campaigns targeted to citizens, there is a lack of investigations that assess the impact of campaigns dedicated to industry sectors. This study discusses the results of a survey targeted at energy-intensive Italian companies, with a sample of 300 responses. Starting from the analysis of drivers that trigger the implementation of energy efficiency measures, the paper proposes an approach to evaluate the amount of energy savings linked to the Italian information and training program targeted to industries carried out by the Italian Energy Efficiency Agency. Results show that although information campaigns are not a crucial driver for companies, they are recognized as a factor that contributes to the implementation of energy efficiency practices. Findings show that roughly 1.4% of energy savings noted by interviewed companies to the Italian Energy Efficiency Agency are a direct effect of the information and training program. This outcome has significant implications, especially for decision-makers, giving evidence of the efficacy of information campaigns on industries, which have great potential for the transition to low carbon production systems.

Suggested Citation

  • Michele Preziosi & Alessandro Federici & Roberto Merli, 2022. "Evaluating the Impact of Public Information and Training Campaigns to Improve Energy Efficiency: Findings from the Italian Industry," Energies, MDPI, vol. 15(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1931-:d:765660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    2. Asensio, Omar Isaac & Delmas, Magali A., 2016. "The dynamics of behavior change: Evidence from energy conservation," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 196-212.
    3. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    4. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    5. Thollander, Patrik & Danestig, Maria & Rohdin, Patrik, 2007. "Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs," Energy Policy, Elsevier, vol. 35(11), pages 5774-5783, November.
    6. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    7. Wojciech Drożdż & Grzegorz Kinelski & Marzena Czarnecka & Magdalena Wójcik-Jurkiewicz & Anna Maroušková & Grzegorz Zych, 2021. "Determinants of Decarbonization—How to Realize Sustainable and Low Carbon Cities?," Energies, MDPI, vol. 14(9), pages 1-19, May.
    8. Abadie, Luis M. & Ortiz, Ramon A. & Galarraga, I., 2012. "Determinants of energy efficiency investments in the US," Energy Policy, Elsevier, vol. 45(C), pages 551-566.
    9. Trianni, A. & Cagno, E., 2012. "Dealing with barriers to energy efficiency and SMEs: Some empirical evidences," Energy, Elsevier, vol. 37(1), pages 494-504.
    10. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    11. Max Åhman & Lars J. Nilsson & Bengt Johansson, 2017. "Global climate policy and deep decarbonization of energy-intensive industries," Climate Policy, Taylor & Francis Journals, vol. 17(5), pages 634-649, July.
    12. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    13. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    14. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
    15. Magdalena Wójcik-Jurkiewicz & Marzena Czarnecka & Grzegorz Kinelski & Beata Sadowska & Katarzyna Bilińska-Reformat, 2021. "Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland," Energies, MDPI, vol. 14(5), pages 1-22, February.
    16. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    17. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    18. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    19. Joanna Kurowska-Pysz & Katarzyna Szczepańska-Woszczyna, 2017. "The Analysis of the Determinants of Sustainable Cross-Border Cooperation and Recommendations on Its Harmonization," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    20. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehdi Bensouda & Mimoun Benali, 2023. "From Fairly Good to Optimal Energy Efficiency Practices within the Moroccan Manufacturing Sector: Are Financial Resources Sufficient?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 478-488, May.
    2. Irini Barbero & Yacine Rezgui & Ioan Petri, 2023. "A European-wide exploratory study to analyse the relationship between training and energy efficiency in the construction sector," Environment Systems and Decisions, Springer, vol. 43(3), pages 337-357, September.
    3. Mehdi Bensouda & Mimoun Benali, 2022. "Overcoming Risk Aversion Regarding Energy Efficiency Practices through Mimetic Pressure and Financial Slack: Findings from the Moroccan Manufacturing Sector," Sustainability, MDPI, vol. 14(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    2. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    3. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    4. Marlene Preiß, 2021. "Treiber und Hemmnisse betrieblicher Effizienzmaßnahmen – Vernetzung als Erfolgsfaktor [Drivers and barriers of operational efficiency measures—networking as a success factor]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 93-106, June.
    5. Ida Johansson & Nawzad Mardan & Erwin Cornelis & Osamu Kimura & Patrik Thollander, 2019. "Designing Policies and Programmes for Improved Energy Efficiency in Industrial SMEs," Energies, MDPI, vol. 12(7), pages 1-17, April.
    6. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    7. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    8. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    9. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    10. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    12. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    13. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    14. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    15. Fredrik Backman, 2017. "Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program," Energies, MDPI, vol. 10(1), pages 1-13, January.
    16. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    17. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    18. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    19. Du, Ping & Zheng, Li-Qun & Xie, Bai-Chen & Mahalingam, Arjun, 2014. "Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China," Energy Policy, Elsevier, vol. 75(C), pages 206-216.
    20. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1931-:d:765660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.