IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8243-d963515.html
   My bibliography  Save this article

Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR

Author

Listed:
  • Yevang Nhiavue

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Department of Energy Policy and Planning, Ministry of Energy and Mines (MEM), Vientiane P.O. Box 4078, Laos)

  • Han Soo Lee

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan)

  • Sylvester William Chisale

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Department of Applied Studies, Malawi University of Science and Technology (MUST), Limbe P.O. Box 5196, Malawi)

  • Jonathan Salar Cabrera

    (Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan
    Institute of Computing and Engineering, Davao Oriental State University, Mati City 8200, Philippines)

Abstract

Lao PDR faces seasonal power supply problems due to its heavy reliance on hydropower. Thus, the aim of this paper was to prioritize renewable energy (RE) resources for sustainable electricity generation in Lao PDR using the analytic hierarchy process (AHP) method, and to further estimate the energy available for the prioritized RE to enhance the seasonal power supply. Four RE alternatives were assessed considering technological, economic, environmental, and social criteria with twelve overall sub-criteria. The results indicated that hydropower was the most highly prioritized alternative, followed by solar. The resulting weights of the RE prioritization were in agreement with the Lao energy policy and plan. In order to address the seasonal power supply problem, setting-up floating photovoltaic (FPV) units in the existing hydropower reservoirs was proposed. The FPV potential was estimated, and the results revealed that the predicted power demand by 2030, as calculated in the latest Lao national power development strategy, could be fully covered by integrating the FPV output from 10% coverage of the water surface in four existing hydropower reservoirs with the existing power supply in 2020. The proposed FPV technology would provide a solution to enhance the seasonal power supply and reduce the power import.

Suggested Citation

  • Yevang Nhiavue & Han Soo Lee & Sylvester William Chisale & Jonathan Salar Cabrera, 2022. "Prioritization of Renewable Energy for Sustainable Electricity Generation and an Assessment of Floating Photovoltaic Potential in Lao PDR," Energies, MDPI, vol. 15(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8243-:d:963515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nolberto Munier & Eloy Hontoria & Fernando Jiménez-Sáez, 2019. "Strategic Approach in Multi-Criteria Decision Making," International Series in Operations Research and Management Science, Springer, number 978-3-030-02726-1, September.
    2. Padilha Campos Lopes, Mariana & Nogueira, Tainan & Santos, Alberto José Leandro & Castelo Branco, David & Pouran, Hamid, 2022. "Technical potential of floating photovoltaic systems on artificial water bodies in Brazil," Renewable Energy, Elsevier, vol. 181(C), pages 1023-1033.
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    5. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    6. Nayyar Hussain Mirjat & Mohammad Aslam Uqaili & Khanji Harijan & Mohd Wazir Mustafa & Md. Mizanur Rahman & M. Waris Ali Khan, 2018. "Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan," Energies, MDPI, vol. 11(4), pages 1-33, March.
    7. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Ozgur Demirta, 2013. "Evaluating the Best Renewable Energy Technology for Sustainable Energy Plannin," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 23-33.
    9. Lee, Nathan & Grunwald, Ursula & Rosenlieb, Evan & Mirletz, Heather & Aznar, Alexandra & Spencer, Robert & Cox, Sadie, 2020. "Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential," Renewable Energy, Elsevier, vol. 162(C), pages 1415-1427.
    10. Colak, H. Ebru & Memisoglu, Tugba & Gercek, Yasin, 2020. "Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey," Renewable Energy, Elsevier, vol. 149(C), pages 565-576.
    11. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    12. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    13. Ahmad, Salman & Tahar, Razman Mat, 2014. "Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia," Renewable Energy, Elsevier, vol. 63(C), pages 458-466.
    14. A. Dinmohammadi & M. Shafiee, 2017. "Determination of the Most Suitable Technology Transfer Strategy for Wind Turbines Using an Integrated AHP-TOPSIS Decision Model," Energies, MDPI, vol. 10(5), pages 1-17, May.
    15. Sueyoshi, Toshiyuki & Mo, Fei & Wang, Derek D., 2022. "Sustainable development of countries all over the world and the impact of renewable energy," Renewable Energy, Elsevier, vol. 184(C), pages 320-331.
    16. Ali, Tausif & Aghaloo, Kamaleddin & Chiu, Yie-Ru & Ahmad, Munir, 2022. "Lessons learned from the COVID-19 pandemic in planning the future energy systems of developing countries using an integrated MCDM approach in the off-grid areas of Bangladesh," Renewable Energy, Elsevier, vol. 189(C), pages 25-38.
    17. Wen-Hsiang Chiu & Wen-Cheng Lin & Chun-Nan Chen & Nien-Ping Chen, 2021. "Using an Analytical Hierarchy Process to Analyze the Development of the Green Energy Industry," Energies, MDPI, vol. 14(15), pages 1-15, July.
    18. Ahmad, Salman & Nadeem, Abid & Akhanova, Gulzhanat & Houghton, Tom & Muhammad-Sukki, Firdaus, 2017. "Multi-criteria evaluation of renewable and nuclear resources for electricity generation in Kazakhstan," Energy, Elsevier, vol. 141(C), pages 1880-1891.
    19. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    20. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    21. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.
    22. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    23. Cayir Ervural, Beyzanur & Evren, Ramazan & Delen, Dursun, 2018. "A multi-objective decision-making approach for sustainable energy investment planning," Renewable Energy, Elsevier, vol. 126(C), pages 387-402.
    24. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    25. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    2. Emel Yontar & Onur Derse, 2023. "Evaluation of sustainable energy action plan strategies with a SWOT/TWOS-based AHP/ANP approach: a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5691-5715, June.
    3. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    4. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    6. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    8. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    9. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    10. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    11. Mastrocinque, Ernesto & Ramírez, F. Javier & Honrubia-Escribano, Andrés & Pham, Duc T., 2022. "Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    12. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    13. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    14. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    15. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    16. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    17. Hegazy Rezk & Basem Alamri & Mokhtar Aly & Ahmed Fathy & Abdul G. Olabi & Mohammad Ali Abdelkareem & Hamdy A. Ziedan, 2021. "Multicriteria Decision-Making to Determine the Optimal Energy Management Strategy of Hybrid PV–Diesel Battery-Based Desalination System," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    18. Kakoulaki, G. & Gonzalez Sanchez, R. & Gracia Amillo, A. & Szabo, S. & De Felice, M. & Farinosi, F. & De Felice, L. & Bisselink, B. & Seliger, R. & Kougias, I. & Jaeger-Waldau, A., 2023. "Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8243-:d:963515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.