IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4413-d841049.html
   My bibliography  Save this article

Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector

Author

Listed:
  • Roberto Eloy Hernández Regalado

    (Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
    Faculty of Energy Building Services Environmental Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, 48565 Steinfurt, Germany
    Institute Association for Resources, Energy and Infrastructure, Münster University of Applied Sciences, Stegerwaldstr. 39, 48565 Steinfurt, Germany)

  • Jurek Häner

    (Faculty of Energy Building Services Environmental Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, 48565 Steinfurt, Germany
    Institute Association for Resources, Energy and Infrastructure, Münster University of Applied Sciences, Stegerwaldstr. 39, 48565 Steinfurt, Germany)

  • Elmar Brügging

    (Faculty of Energy Building Services Environmental Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, 48565 Steinfurt, Germany
    Institute Association for Resources, Energy and Infrastructure, Münster University of Applied Sciences, Stegerwaldstr. 39, 48565 Steinfurt, Germany)

  • Jens Tränckner

    (Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany)

Abstract

The urgent need to meet climate goals provides unique opportunities to promote small-scale farm anaerobic digesters that valorize on-site wastes for producing renewable electricity and heat, thereby cushioning agribusinesses against energy perturbations. This study explored the economic viability of mono-digestion of cow manure (CWM) and piglet manure (PM) in small manured-based 99 kW el plants using three treatment schemes (TS): (1) typical agricultural biogas plant, (2) a single-stage expanded granular sludge bed (EGSB) reactor, and (3) a multistage EGSB with a continuous stirred tank reactor. The economic evaluation attempted to take advantage of the financial incentives provided by The Renewable Energy Sources Act in Germany. To evaluate these systems, batch tests on raw and solid substrate fractions were conducted. For the liquid fraction, data of continuous tests obtained in a laboratory was employed. The economical evaluation was based on the dynamic indicators of net present value and internal return rate (IRR). Sensitivity analyses of the electricity and heat selling prices and hydraulic retention time were also performed. Furthermore, an incremental analysis of IRR was conducted to determine the most profitable alternative. The most influential variable was electricity selling price, and the most profitable alternatives were TS1 (CWM) > TS1 (PM) > TS3 (CWM). However, further studies on co-digestion using TS3 are recommended because this scheme potentially provides the greatest technical flexibility and highest environmental sustainability.

Suggested Citation

  • Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4413-:d:841049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
    2. Rajendran, Karthik & Kankanala, Harshavardhan R. & Martinsson, Rakel & Taherzadeh, Mohammad J., 2014. "Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): A case study on an industrial process," Applied Energy, Elsevier, vol. 125(C), pages 84-92.
    3. Raquel Iglesias & Raúl Muñoz & María Polanco & Israel Díaz & Ana Susmozas & Antonio D. Moreno & María Guirado & Nely Carreras & Mercedes Ballesteros, 2021. "Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development," Energies, MDPI, vol. 14(10), pages 1-30, May.
    4. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    5. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    6. Margarita Andreas Dareioti & Aikaterini Ioannis Vavouraki & Konstantina Tsigkou & Michael Kornaros, 2021. "Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey," Energies, MDPI, vol. 14(17), pages 1-14, August.
    7. Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    2. Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
    3. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Rajendran, Karthik & Mahapatra, Durgamadhab & Venkatraman, Arun Venkatesh & Muthuswamy, Shanmugaprakash & Pugazhendhi, Arivalagan, 2020. "Advancing anaerobic digestion through two-stage processes: Current developments and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Ruggero Bellini & Ilaria Bassani & Arianna Vizzarro & Annalisa Abdel Azim & Nicolò Santi Vasile & Candido Fabrizio Pirri & Francesca Verga & Barbara Menin, 2022. "Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO 2," Energies, MDPI, vol. 15(11), pages 1-34, June.
    6. Aleksandra Szaja & Agnieszka Montusiewicz & Magdalena Lebiocka, 2021. "The Energetic Aspect of Organic Wastes Addition on Sewage Sludge Anaerobic Digestion: A Laboratory Investigation," Energies, MDPI, vol. 14(19), pages 1-12, September.
    7. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    8. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    9. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    10. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    11. Kęstutis Venslauskas & Kęstutis Navickas & Marja Nappa & Petteri Kangas & Revilija Mozūraitytė & Rasa Šližytė & Vidmantas Župerka, 2021. "Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    12. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    13. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    14. Mohrmann, Sören & Steins, Aaron & Schaper, Christian, 2021. "Erfolgsfaktoren und Zukunftsaussichten für eine wirtschaftliche Biogasproduktion in Deutschland - Ergebnisse einer qualitativen Inhaltsanalyse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317072, German Association of Agricultural Economists (GEWISOLA).
    15. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    16. Vasmara, Ciro & Marchetti, Rosa & Carminati, Domenico, 2021. "Wastewater from the production of lactic acid bacteria as feedstock in anaerobic digestion," Energy, Elsevier, vol. 229(C).
    17. Sebastian Awiszus & Klaus Meissner & Sebastian Reyer & Joachim Müller, 2019. "Environmental Assessment of a Bio-Refinery Concept Comprising Biogas Production, Lactic Acid Extraction and Plant Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    18. Graciela M. L. Ruiz-Aguilar & Hector G. Nuñez-Palenius & Nanh Lovanh & Sarai Camarena-Martínez, 2022. "Comparative Study of Methane Production in a One-Stage vs. Two-Stage Anaerobic Digestion Process from Raw Tomato Plant Waste," Energies, MDPI, vol. 15(23), pages 1-12, December.
    19. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    20. Krystyna Lelicińska-Serafin & Piotr Manczarski & Anna Rolewicz-Kalińska, 2023. "An Insight into Post-Consumer Food Waste Characteristics as the Key to an Organic Recycling Method Selection in a Circular Economy," Energies, MDPI, vol. 16(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4413-:d:841049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.