IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2601-d228629.html
   My bibliography  Save this article

Environmental Assessment of a Bio-Refinery Concept Comprising Biogas Production, Lactic Acid Extraction and Plant Nutrient Recovery

Author

Listed:
  • Sebastian Awiszus

    (Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany)

  • Klaus Meissner

    (Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany)

  • Sebastian Reyer

    (Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany)

  • Joachim Müller

    (Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany)

Abstract

The process of nutrient recovery from biogas digestate and the extraction of lactic acid from silages is technically feasible, but so far no investigations are available on the environmental sustainability of these technologies in the context of the biogas production chain. The aim of the present study is to show whether the recovery of nutrients from digestate (NR) and the extraction of lactic acid from silages (LA) can be integrated in the biogas production process system in an environmentally sustainable way. The modelling in the present study is based on the standards DIN ISO 14040 and DIN ISO 14044 and the results are evaluated with respect to the 100-year global warming potential, the primary energy demand and the eutrophication potential. Results show that the recovery of nutrients from digestate can be a sustainable solution to the problem of surplus nutrients in biogas regions. Furthermore, lactic acid, which is extracted from silages can provide an environmentally sustainable source of income for biogas plant operators. The urgency of the nutrient surplus problem in these regions calls for increased research and the support of policy makers to foster development activities.

Suggested Citation

  • Sebastian Awiszus & Klaus Meissner & Sebastian Reyer & Joachim Müller, 2019. "Environmental Assessment of a Bio-Refinery Concept Comprising Biogas Production, Lactic Acid Extraction and Plant Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2601-:d:228629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    2. Andrea Ehmann & Inga-Mareike Bach & Sukhanes Laopeamthong & Jennifer Bilbao & Iris Lewandowski, 2017. "Can Phosphate Salts Recovered from Manure Replace Conventional Phosphate Fertilizer?," Agriculture, MDPI, vol. 7(1), pages 1-20, January.
    3. Ola Stedje Hanserud & Kari-Anne Lyng & Jerke W. De Vries & Anne Falk Øgaard & Helge Brattebø, 2017. "Redistributing Phosphorus in Animal Manure from a Livestock-Intensive Region to an Arable Region: Exploration of Environmental Consequences," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    4. Jacobs, Anna & Auburger, Sebastian & Bahrs, Enno & Brauer-Siebrecht, Wiebke & Christen, Olaf & Götze, Philipp & Koch, Heinz-Josef & Rücknagel, Jan & Märländer, Bernward, 2017. "Greenhouse gas emission of biogas production out of silage maize and sugar beet – An assessment along the entire production chain," Applied Energy, Elsevier, vol. 190(C), pages 114-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Kęstutis Venslauskas & Kęstutis Navickas & Marja Nappa & Petteri Kangas & Revilija Mozūraitytė & Rasa Šližytė & Vidmantas Župerka, 2021. "Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    4. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    5. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
    6. Mohrmann, Sören & Steins, Aaron & Schaper, Christian, 2021. "Erfolgsfaktoren und Zukunftsaussichten für eine wirtschaftliche Biogasproduktion in Deutschland - Ergebnisse einer qualitativen Inhaltsanalyse," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317072, German Association of Agricultural Economists (GEWISOLA).
    7. Niccolò Pampuro & Christian Preti & Eugenio Cavallo, 2018. "Recycling Pig Slurry Solid Fraction Compost as a Sound Absorber," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    8. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    9. Sinéad O’Keeffe & Daniela Thrän, 2019. "Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    10. Luz M. Gallego Fernández & Esmeralda Portillo Estévez & Francisco M. Baena‐Moreno & Luis F. Vilches Arena & Benito Navarrete Rubia, 2023. "Advances in research project IBUMECO2: project and process description, methodology, and goals expected," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(2), pages 160-172, April.
    11. Dag Lorick & Robin Harder & Magdalena Svanström, 2021. "A Circular Economy for Phosphorus in Sweden—Is it Possible?," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    12. Ciechanowski, Wojciech & Maciejczak, Mariusz, 2023. "Functioning of Agricultural Biogas Plants from the Perspective of Transaction Costs-A Case Study," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2023(4).
    13. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    14. Egidijus Buivydas & Kęstutis Navickas & Kęstutis Venslauskas, 2024. "A Life Cycle Assessment of Methane Slip in Biogas Upgrading Based on Permeable Membrane Technology with Variable Methane Concentration in Raw Biogas," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    15. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    16. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    17. Anita Konieczna & Kamil Roman & Kinga Borek & Emilia Grzegorzewska, 2021. "GHG and NH 3 Emissions vs. Energy Efficiency of Maize Production Technology: Evidence from Polish Farms; a Further Study," Energies, MDPI, vol. 14(17), pages 1-16, September.
    18. Arkadiusz Piwowar, 2020. "Agricultural Biogas—An Important Element in the Circular and Low-Carbon Development in Poland," Energies, MDPI, vol. 13(7), pages 1-12, April.
    19. Franz Grossauer & Gernot Stoeglehner, 2023. "Bioeconomy—A Systematic Literature Review on Spatial Aspects and a Call for a New Research Agenda," Land, MDPI, vol. 12(1), pages 1-22, January.
    20. Magdalena Szymańska & Tomasz Sosulski & Adriana Bożętka & Urszula Dawidowicz & Adam Wąs & Ewa Szara & Agata Malak-Rawlikowska & Piotr Sulewski & Gijs W. P. van Pruissen & René L. Cornelissen, 2020. "Evaluating the Struvite Recovered from Anaerobic Digestate in a Farm Bio-Refinery as a Slow-Release Fertiliser," Energies, MDPI, vol. 13(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2601-:d:228629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.