IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8475-d703213.html
   My bibliography  Save this article

Design and Parametric Investigation of an Efficient Heating System, an Effort to Obtain a Higher Seasonal Performance Factor

Author

Listed:
  • Trond Thorgeir Harsem

    (Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
    Norconsult AS, 1338 Sandvika, Norway)

  • Behrouz Nourozi

    (Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Amirmohammad Behzadi

    (Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Sasan Sadrizadeh

    (Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden)

Abstract

The present work introduces an innovative yet feasible heating system consisting of a ground source heat pump, borehole thermal energy storage, an auxiliary heater, radiators, and ventilation coils. The concept is developed by designing a new piping configuration monitored by a smart control system to reduce the return flow temperature and increase the temperature differential between the supply and return flows. The radiators and ventilation heating circuits are connected in series to provide the heat loads with the same demand. The investigation of the proposed model is performed through developed Python code considering a case study hospital located in Norway. The article presents, after validation of the primary heating system installed in the hospital, a parametric investigation to evaluate the effect of main operational parameters on the performance metrics of both the heat pump and the total system. According to the results, the evaporator temperature is a significant parameter that considerably impacts the system performance. The parametric study findings show that the heat pumps with a thermal capacity of 400 kW and 600 kW lead to the highest heat pump and total seasonal performance factors, respectively. It is also observed that increasing the heat pump capacity does not affect the performance indicators when the condensation temperature is 40 °C and the heat recovery is 50%. Moreover, choosing a heat pump with a smaller capacity at the heat recovery of 75% (or higher) would be an appropriate option because the seasonal performance values are not varied by changing the heat pump capacity. The results reveal that reducing return temperature under a proper parameters selection results in substantially higher seasonal performance factors of the heat pump and total system. These outcomes are in-line with the United Nations sustainable development goals including Sustainable Cities and Communities.

Suggested Citation

  • Trond Thorgeir Harsem & Behrouz Nourozi & Amirmohammad Behzadi & Sasan Sadrizadeh, 2021. "Design and Parametric Investigation of an Efficient Heating System, an Effort to Obtain a Higher Seasonal Performance Factor," Energies, MDPI, vol. 14(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8475-:d:703213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeong Soo Shin & Jong Woo Park & Sean Hay Kim, 2020. "Measurement and Verification of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(7), pages 1-24, April.
    2. Erica Corradi & Mosè Rossi & Alice Mugnini & Anam Nadeem & Gabriele Comodi & Alessia Arteconi & Danilo Salvi, 2021. "Energy, Environmental, and Economic Analyses of a District Heating (DH) Network from Both Thermal Plant and End-Users’ Prospective: An Italian Case Study," Energies, MDPI, vol. 14(22), pages 1-25, November.
    3. José Ignacio Villarino & Alberto Villarino & I. de Arteaga & Roberto Quinteros & Alejandro Alañón, 2019. "A Comparative Energy and Economic Analysis between a Low Enthalpy Geothermal Design and Gas, Diesel and Biomass Technologies for a HVAC System Installed in an Office Building," Energies, MDPI, vol. 12(5), pages 1-16, March.
    4. Blázquez, Cristina Sáez & Borge-Diez, David & Nieto, Ignacio Martín & Martín, Arturo Farfán & González-Aguilera, Diego, 2021. "Multi-parametric evaluation of electrical, biogas and natural gas geothermal source heat pumps," Renewable Energy, Elsevier, vol. 163(C), pages 1682-1691.
    5. Chung-Geon Lee & La-Hoon Cho & Seok-Jun Kim & Sun-Yong Park & Dae-Hyun Kim, 2021. "Comparative Analysis of Combined Heating Systems Involving the Use of Renewable Energy for Greenhouse Heating," Energies, MDPI, vol. 14(20), pages 1-22, October.
    6. Michael E. Stamatakis & Maria G. Ioannides, 2021. "State Transitions Logical Design for Hybrid Energy Generation with Renewable Energy Sources in LNG Ship," Energies, MDPI, vol. 14(22), pages 1-26, November.
    7. Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
    8. Jeong Soo Shin & Sean Hay Kim & Jong Woo Park, 2020. "Economic Analysis of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(11), pages 1-20, June.
    9. Sun, Fangtian & Hao, Baoru & Fu, Lin & Wu, Hongwei & Xie, Yonghua & Wu, Haifeng, 2021. "New medium-low temperature hydrothermal geothermal district heating system based on distributed electric compression heat pumps and a centralized absorption heat transformer," Energy, Elsevier, vol. 232(C).
    10. Farzanehkhameneh, Pooya & Soltani, M. & Moradi Kashkooli, Farshad & Ziabasharhagh, Masoud, 2020. "Optimization and energy-economic assessment of a geothermal heat pump system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    2. Ahmad Taki & Bilal Alsheglawi, 2022. "Toward Energy-Efficient Houses Considering Social Cultural Needs in Bahrain: A New Framework Approach," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    3. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    4. Liu, Xin & Zuo, Yuning & Yin, Zekai & Liang, Chuanzhi & Feng, Guohui & Yang, Xiaodan, 2023. "Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China," Energy, Elsevier, vol. 262(PA).
    5. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Aquino & Flavio Scrucca & Emanuele Bonamente, 2021. "Sustainability of Shallow Geothermal Energy for Building Air-Conditioning," Energies, MDPI, vol. 14(21), pages 1-30, October.
    2. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    3. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    4. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    5. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    6. Jeong Soo Shin & Sean Hay Kim & Jong Woo Park, 2020. "Economic Analysis of Integrated Ground Source Heat Pumps on a Shared Ground Loop," Energies, MDPI, vol. 13(11), pages 1-20, June.
    7. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    8. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    9. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    10. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    11. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    13. Tang, Fujiao & Nowamooz, Hossein, 2019. "Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths," Renewable Energy, Elsevier, vol. 143(C), pages 1732-1743.
    14. Santamarta, Juan C. & García-Gil, Alejandro & Expósito, María del Cristo & Casañas, Elías & Cruz-Pérez, Noelia & Rodríguez-Martín, Jesica & Mejías-Moreno, Miguel & Götzl, Gregor & Gemeni, Vasiliki, 2021. "The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands," Renewable Energy, Elsevier, vol. 171(C), pages 505-515.
    15. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    16. Nazila Nematzadeh & Hadi Ghaebi & Ebrahim Abdi Aghdam, 2022. "Thermo-Economic Analysis of Innovative Integrated Power Cycles for Low-Temperature Heat Sources Based on Heat Transformer," Sustainability, MDPI, vol. 14(20), pages 1-27, October.
    17. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    18. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    19. Arghand, Taha & Javed, Saqib & Trüschel, Anders & Dalenbäck, Jan-Olof, 2021. "Cooling of office buildings in cold climates using direct ground-coupled active chilled beams," Renewable Energy, Elsevier, vol. 164(C), pages 122-132.
    20. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8475-:d:703213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.