IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6258-d648236.html
   My bibliography  Save this article

Modeling Long-Term Electricity Generation Planning to Reduce Carbon Dioxide Emissions in Nigeria

Author

Listed:
  • Juyoul Kim

    (Department of NPP Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea)

  • Ahmed Abdel-Hameed

    (Department of NPP Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea)

  • Soja Reuben Joseph

    (Department of NPP Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea)

  • Hilali Hussein Ramadhan

    (Department of NPP Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea)

  • Mercy Nandutu

    (Department of NPP Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea)

  • Joung-Hyuk Hyun

    (Department of NPP Engineering, KEPCO International Nuclear Graduate School, 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 45014, Korea)

Abstract

The most recent assessments conducted by the International Energy Agency indicate that natural gas accounts for the majority of Nigeria’s fossil fuel-derived electricity generation, with crude oil serving mostly as a backup source. Fossil fuel-generated electricity represents 80% of the country’s total. In addition, carbon dioxide (CO 2 ) emissions in Nigeria in 2018 (101.3014 Mtons) demonstrated a 3.83% increase from 2017. The purpose of this study is to suggest an alternate energy supply mix to meet future electrical demand and reduce CO 2 emissions in Nigeria. The Model for Energy Supply Strategy Alternatives and their General Environmental Impact (MESSAGE) was used in this study to model two case situations of the energy supply systems in Nigeria to determine the best energy supply technology to meet future demand. The Simplified Approach to Estimating Electricity Generation’s External Costs and Impacts (SIMPACTS) code is also used to estimate the environmental impacts and resulting damage costs during normal operation of various electricity generation technologies. Results of the first scenario show that gas and oil power plants are the optimal choice for Nigeria to meet future energy needs with no bound on CO 2 emission. If Nigeria adopts CO 2 emission restrictions to comply with the Paris Agreement’s target of decreasing worldwide mean temperature rise to 1.5 °C, the best option is nuclear power plants (NPPs). The MESSAGE results demonstrate that both fossil fuels and NPPs are the optimal electricity-generating technologies to meet Nigeria’s future energy demand. The SIMPACTS code results demonstrate that NPPs have the lowest damage costs because of their low environmental impact during normal operation. Therefore, NPP technology is the most environmentally friendly technology and the best choice for the optimization of future electrical technology to meet the demand. The result from this study will serve as a reference source in modeling long-term energy mix therefore reducing CO 2 emission in Nigeria.

Suggested Citation

  • Juyoul Kim & Ahmed Abdel-Hameed & Soja Reuben Joseph & Hilali Hussein Ramadhan & Mercy Nandutu & Joung-Hyuk Hyun, 2021. "Modeling Long-Term Electricity Generation Planning to Reduce Carbon Dioxide Emissions in Nigeria," Energies, MDPI, vol. 14(19), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6258-:d:648236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hainoun, A. & Almoustafa, A. & Seif Aldin, M., 2010. "Estimating the health damage costs of syrian electricity generation system using impact pathway approach," Energy, Elsevier, vol. 35(2), pages 628-638.
    2. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarvar Gurbanov, 2021. "Role of Natural Gas Consumption in the Reduction of CO 2 Emissions: Case of Azerbaijan," Energies, MDPI, vol. 14(22), pages 1-14, November.
    2. Parzen, Maximilian & Abdel-Khalek, Hazem & Fedotova, Ekaterina & Mahmood, Matin & Frysztacki, Martha Maria & Hampp, Johannes & Franken, Lukas & Schumm, Leon & Neumann, Fabian & Poli, Davide & Kiprakis, 2023. "PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa," Applied Energy, Elsevier, vol. 341(C).
    3. Niwagira Daniel & Juyoul Kim, 2022. "A Study on Integrating SMRs into Uganda’s Future Energy System," Sustainability, MDPI, vol. 14(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hang & Zhang, Yongxin & Zheng, Chenghang & Wu, Xuecheng & Chen, Linghong & Fu, Joshua S. & Gao, Xiang, 2018. "Cost estimate of the multi-pollutant abatement in coal-fired power sector in China," Energy, Elsevier, vol. 161(C), pages 523-535.
    2. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi Saghdel, 2018. "External costs from fossil electricity generation: A review of the applied impact pathway approach," Energy & Environment, , vol. 29(5), pages 635-648, August.
    3. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    4. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    5. Natina Yaduma & Mika Kortelainen & Ada Wossink, 2013. "Estimating Mortality and Economic Costs of Particulate Air Pollution in Developing Countries: The Case of Nigeria," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 361-387, March.
    6. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    7. Hainoun, A. & Omar, H. & Almoustafa, S. & Seif-Eldin, M.K. & Meslmani, Y., 2014. "Future development of Syrian power sector in view of GHG mitigation options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1045-1055.
    8. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    9. A. H. Truong & Minh Ha-Duong, 2018. "Impact of Co-firing Straw for Power Generation to Air Quality: A Case Study in Two Coal Power Plants in Vietnam," Post-Print hal-02352700, HAL.
    10. Muntasir Murshed, 2020. "Electricity conservation opportunities within private university campuses in Bangladesh," Energy & Environment, , vol. 31(2), pages 256-274, March.
    11. Slocum, Alexander H. & Gessel, David J., 2022. "Evolving from a hydrocarbon-based to a sustainable economy: Starting with a case study for Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Lazzeroni, Paolo & Cirimele, Vincenzo & Canova, Aldo, 2021. "Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Kyriakarakos, George & Patlitzianas, Konstantinos & Damasiotis, Markos & Papastefanakis, Dimitrios, 2014. "A fuzzy cognitive maps decision support system for renewables local planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 209-222.
    14. Thopil, George Alex & Pouris, Anastassios, 2015. "Aggregation and internalisation of electricity externalities in South Africa," Energy, Elsevier, vol. 82(C), pages 501-511.
    15. Sakulniyomporn, Songsak & Kubaha, Kuskana & Chullabodhi, Chullapong, 2011. "External costs of fossil electricity generation: Health-based assessment in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3470-3479.
    16. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    17. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    18. Janusz Zyśk & Artur Wyrwa & Marcin Pluta & Tadeusz Olkuski & Wojciech Suwała & Maciej Raczyński, 2021. "The Health Impact and External Cost of Electricity Production," Energies, MDPI, vol. 14(24), pages 1-19, December.
    19. Casas-Ledon, Yannay & Arteaga-Perez, Luis E. & Dewulf, Jo & Morales, Mayra C. & Rosa, Elena & Peralta-Suáreza, Luis M. & Van Langenhove, Herman, 2014. "Health external costs associated to the integration of solid oxide fuel cell in a sugar–ethanol factory," Applied Energy, Elsevier, vol. 113(C), pages 1283-1292.
    20. Zhang, Hui & Zhang, Bing, 2020. "The unintended impact of carbon trading of China's power sector," Energy Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6258-:d:648236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.